
- •Механика. Механическое движение. Скорость, ускорение материальной точки.
- •Прямолинейное движение и движение по окружности материальной точки
- •Законы Ньютона.
- •Силы в механике.
- •Закон сохранения импульса.
- •Основной закон динамики вращательного движения твердого тела.
- •Работа. Энергия. Мощность.
- •Колебания.
- •Волны. Звук.
- •Закон Паскаля. Сила Архимеда. Уравнение Бернулли, следствия из него.
- •Температура. Температурные шкалы: шкала Цельсия, идеальная газовая и абсолютная термодинамическая шкала температур.
- •Уравнение состояния идеального газа. Закон Дальтона. Изопроцессы и их уравнения.
- •Взаимосвязь теплоты и работы. Первое начало термодинамики. Работа, совершаемая телом при изменении объема. Работа газа в различных изопроцессах.
- •Теплоемкость тела, удельная, молярная, теплоемкости Cp и Cv. Второе начало термодинамики.
- •Основные положения мкт. Масса и размеры молекул. Основное уравнение мкт. Кинетическая энергия молекулы. Средняя квадратичная скорость молекул. Длина свободного пробега.
- •Барометрическая формула.
- •Явления переноса.
- •Электроемкость. Конденсатор. Емкость плоского конденсатора. Емкость батареи конденсаторов. Энергия конденсатора.
- •Электрический ток. Условия существования электрического тока. Сила тока. Плотность тока. Электродвижущая сила. Напряжение.
- •Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротивление проводников. Дифференциальная форма закона Ома.
- •Работа и мощность электрического тока. Закон Джоуля – Ленца.
- •Разветвленные цепи. Правила Кирхгофа. Последовательное и параллельное соединение проводников.
- •Действие электрического тока на тело человека. Риск поражения электрическим током в быту.
- •Электролиты. Законы Фарадея для электролиза.
- •Электропроводность газов. Несамостоятельный и самостоятельный разряд Виды самостоятельного разряда.
- •Магнитное взаимодействие. Опыт Эрстеда. Магнитное поле. Изображение магнитных полей. Принцип суперпозиции. Сила Ампера.
- •Сила Лоренца. Полярные сияния.
- •Контур с током в магнитное поле. Индукция магнитного поля. Работа по перемещению проводника с током в магнитном поле. Закон Био - Савара - Лапласа.
- •Электромагнитное поле. Явление электромагнитной индукции. Закон Фарадея для электромагнитной индукции. Правило Ленца.
- •Электромагнитная теория света. Интерференция света.
- •Явление дифракции. Дифракционная решетка. Разрешающая способность оптических приборов.
- •Зеркала. Тонкие линзы. Формула линзы. Оптическая сила линзы.
- •Глаз как оптическая система. Лупа, микроскоп, телескоп.
- •Понятие о нелинейной оптике. Прохождение света через оптически неоднородную среду. Закон Рэлея. Цвет неба и зорь. Радуга. Миражи. Гало.
- •Тепловое излучение. Количественные характеристики излучения. Законы Стефана-Больцмана и Вина. Законы Кирхгофа для излучения. Формулы Вина.
- •Фотоэффект Закономерности Столетова. Уравнение Эйнштейна.
- •Опыты Резерфорда по рассеянию альфа-частиц. Атом Резерфорда.
- •Постулаты Бора. Правила отбора. Элементарная теория атома водорода.
- •Квантово-механическая теория атома водорода. Электронные оболочки атомов. Периодическая система элементов Менделеева.
- •Состав ядра. Ядерные силы. Энергия связи ядра.
- •Реакции синтеза. Условия их осуществления Управляемый термоядерный синтез.
- •Радиоактивность. Закон радиоактивного распада.
-
Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротивление проводников. Дифференциальная форма закона Ома.
Закон Ома для однородного участка цепи:
Участок цепи называется однородным, если в его состав не входит источник тока. I=U/R, 1 Ом – сопротивление такого проводника, в котором сила в 1А течет при 1В.
Величина сопротивления зависит от формы и свойств материала проводника. Для однородного цилиндрического проводника его R=ρl/S, ρ – величина, зависящая от использованного материала – удельное сопротивление вещества, из ρ=RS/l следует, что (ρ) = 1 Ом*м. Величина, обратная ρ – удельная проводимость γ=1/ρ.
Экспериментально установлено, что при повышении температуры электрическое сопротивление у металлов увеличивается. При не слишком низких температурах удельное сопротивление металлов растет ~ абсолютной температуре p = α*p0*T, p0 – удельное сопротивление при 0оС, α – температурный коэффициент. Для большинства металлов α = 1/273 = 0,004 К-1. p = p0*(1+ α*t), t – температура в оС.
Согласно классической электронной теории металлов в металлах с идеальной кристаллической решеткой электроны движутся не испытывая сопротивления (p = 0).
Причина, вызывающая появление электрического сопротивления – посторонние примеси и физические дефекты кристаллической решетки, а также тепловое движение атомов. Амплитуда колебаний атомов зависит от t. Зависимость удельного сопротивления от t является сложной функцией:
p(T) = pост + pид., pост – остаточное удельное сопротивление, pид.- идеальное сопротивление металла.
Идеальное сопротивление соответствует абсолютно чистому металлу и определяется лишь тепловыми колебаниями атомов. На основании общих соображений уд. сопротивление ид. металла должно стремиться к 0 при T → 0. Однако удельное сопротивление как функция слагается из суммы независимых слагаемых, поэтому в связи с наличием примесей и др. дефектов кристаллической решетки удельного сопротивления при понижении t → к некоторому росту пост. pост . Иногда для некоторых металлов температурная зависимость p проходит через минимум. Величина ост. уд. сопротивления зависит от наличия дефектов в решетке и содержания примесей.
j=γ*E – закон Ома в дифференцированной форме, описывающий процесс в каждой точке проводника, где j – плотность тока, Е – напряженность электрического поля.
Цепь включает резистор R и источник тока. На неоднородном участке цепи на носители тока действуют кроме электростатических сил сторонние силы. Сторонние силы способны вызвать упорядоченное движение носителей тока, такие как электростатические. На неоднородном участке цепи к полю электрических зарядов добавляется поле сторонних сил, создаваемое источником ЭДС. Закон Ома в дифференцированной форме: j=γE. Обобщая формулу на случай неоднородного проводника j=γ(E+E*)(1).
От закона Ома в дифференцированной форме для неоднородного участка цепи можно перейти к интегральной форме закона Ома для этого участка. Для этого рассмотрим неоднородный участок. В нем поперечное сечение проводника может быть непостоянным. Допустим, что внутри этого участка цепи существует линия, которую будем называть контуром тока, удовлетворяющая:
-
В каждом сечении перпендикулярно контуру величины j, γ, E, E* имеют одинаковые значения.
-
j, E и Е* в каждой точке направлены по касательной к контуру.
Выберем произвольно направление движения по контуру. Пусть выбранное направление соответствует перемещению от 1 к 2. Возьмем элемент проводника площадью S и элементом контура dl. Спроецируем векторы, входящие в (1) на элемент контура dl: j=γ(E+E*) (2).
I вдоль контура равна проекции плотности тока на площадь: I=jS (3).
Удельная проводимость: γ=1/ρ. Заменяя в (2) I/S=1/ρ(E+E*).Умножим на dl и проинтегрируем вдоль контура ∫Iρdl/S=∫Eedl+∫E*edl. Учтем, что ∫ρdl/S=R, а ∫Eedl=(φ1-φ2), ∫E*edl= ε12, IR= ε12+(φ1-φ2). ε12, как и I – величина алгебраическая, поэтому условились, когда ع способствует движению положительных носителей тока в выбранном направлении 1-2, считать ε12>0. Но на практике этот случай, когда при обходе участка цепи в начале встречается отрицательный полюс, затем положительный. Если ع препятствует движению положительных носителей, в выбранном направлении, то ε12<0.
Из последней формулы I=(φ1-φ2)+(-)ε12/R. Эта формула выражает закон Ома для неоднородного участка цепи. Исходя из нее, можно получить закон Ома для неоднородного участка цепи. В этом случае ε12=0, следовательно, I=(φ1-φ2)/R, I=U/R, а так же закон Ома для замкнутой цепи: φ1=φ2, значит I=ع/R, где R – суммарное сопротивление всей цепи: I=ع/ R0+r.