
- •Міністерство аграрної політики України Білоцерківський державний аграрний університет фізика
- •І. Основи механіки
- •І.1 Основи кінематики поступального руху
- •І.2 Основи динаміки поступального руху. Закони Ньютона. Маса і сила
- •І.3 Гравітаційні сили. Закон всесвітнього тяжіння. Вага тіла
- •І.4 Сили пружності
- •І.5 Сили тертя
- •І.6 Робота і потужність
- •І.7 Енергія. Види механічної енергії
- •І.8 Основи кінематики обертового руху
- •І.9 Основний закон динаміки обертового руху
- •І.10 Основи кінематики коливального руху
- •І.11 Хвильові процеси
- •І.12 Звукові хвилі (звук)
- •Як видно із рис.1.9, найменші інтенсивності хвиль сприймаються в інтервалі частот 1000 Гц – 5000 Гц. Тобто, у цьому інтервалі частот чутливість вуха до звукових коливань найбільша.
- •Іі. Основи молекулярної фізики
- •Іі.1 Основні положення молекулярно-кінетичної теорії
- •1. Всі речовини незалежно від їх агрегатного стану складаються з молекул, які, у свою чергу, складаються з атомів.
- •3. Молекули в тілах безперервно хаотично рухаються.
- •Іі.2 Теплота і температура
- •Іі.3 Газовий стан речовин та його характеристики
- •Іі.4 Основне рівняння молекулярно-кінетичної теорії ідеального газу
- •Іі.5 Рівняння стану ідеального газу
- •Іі.6 Зв’язок між середньою енергією молекул і абсолютною температурою газу
- •Іі.7 Зв’язок тиску з абсолютною температурою газу
- •Іі.8 Явища переносу. Дифузія
- •Іі.9 Теплопровідність
- •Іі.10 в’язкість (внутрішнє тертя)
- •Іі.11 Поверхневий натяг
- •Іі.12 Явища змочування і незмочування
- •Іі.І3 Додатковий тиск під викривленою поверхнею рідин
- •Іі.14 Капілярні явища. Формула Жюрена
- •Іі.15 Пароутворення та його види. Конденсація
- •Іі.16 Вологість повітря. Точка роси
- •II.17 Основи термодинаміки. Закони термодинаміки.
- •Іiі. Основи електрики ііі.1 Природа електричних явищ. Взаємодія зарядів
- •Ііі.2 Електричне поле. Напруженість поля точкового заряду. Силові лінії поля
- •Ііі.3 Потенціал електричного поля. Напруга
- •Ііі.4 Провідники в електричному полі
- •Ііі.5 Діелектрики в електричному полі
- •Ііі.6 Електричний струм. Сила струму. Електрорушійна сила
- •Ііі.7 Опір провідників. Закон Ома для ділянки кола. Робота і потужність струму
- •Ііі.8 Закон Ома для замкнутого кола
- •IV. Електромагнетизм
- •IV.1 Природа магнетизму. Взаємодія електричних струмів. Напруженість магнітного поля. Закон і формула Ампера
- •Іv.2 Силові лінії магнітного поля
- •Іv.3 Речовини в магнітному полі. Магнітна індукція. Потік магнітної індукції
- •Іv.4 Електромагнітна індукція та її види
- •Іv.5. Електромагнітні хвилі
- •V. Оптичні явища
- •V.1 Природа світла
- •V.2 Заломлення світла
- •V.3 Дисперсія світла
- •V.4 Поглинання світла. Фізико-хімічна дія світла
- •V.5 Інтерференція світла
- •V.6 Дифракція світла
- •VI. Атоми хімічних елементів
- •VI.1 Модель будови атома. Постулати Бора
- •VI.2 Будова багатоелектронних атомів.
- •VI.3 Утворення спектрів випромінювання і поглинання електромагнітних хвиль
- •VI.4 Фотоелектричний ефект
- •VII. Ядра атомів хімічних елементів
- •VII.1 Будова ядер атомів. Ізотопи. Ядерні сили
- •VII.2 Радіоактивність. Радіоактивне випромінювання
- •VII.3 Реакції ділення та синтезу ядер
- •3. Префікси для утворення кратних і дольних одиниць
- •Література
V.2 Заломлення світла
При неперпендикулярному падінні світла на границю розділу двох середовищ змінюється напрямок його розповсюдження (змінюється напрямок променів). Це явище називають заломленням світла. Воно має місце, якщо швидкості світла в середовищах не однакові. Зв’язок між кутамиαпадіння і кутамиγзаломлення променів на границі розділу двох середовищ та швидкостямиv1іv2в них дається законом заломлення. Нагадаємо, щокутпадінняα– це кут між падаючим променем і перпендикуляром до границі розділу середовищ в точці падіння променя, акут заломленняγ – кут між цим же перпендикуляром і заломленим променем (рис.V.1).
Рис. V.1
Закон заломлення формулюється так:
Відношення синуса кута падіння до синуса кута заломлення дорівнює відношенню швидкості світла в першому середовищі до швидкості світла в другому середовищі і є величиною сталою, яку називають відносним показником заломлення n21 середовища, куди переходить світло, відносно середовища, з якого воно падає на границю розділу:
. (V.1)
Середовище, в якому швидкість світла більша порівняно з іншим середовищем, називається оптично менш густим, а середовище, де вона менша, порівняно з іншим, –оптично більш густим.
Із формули (V.1) випливає, що при переході світла із оптично більш густого середовища в оптично менш густе, тобто колиv2 > v1, тоsin γ > sin αі кут заломленняγ більший кута падіння α(рис.V.2). Якщо в такому разі збільшувати кут падінняα, то буде збільшуватись і кут заломленняγ (відношення синусів цих кутів повинно залишатись сталим числомn21) і при деякому куті падінняα, кут заломленняγстає рівним 90˚.
Кут
падінняα = А, при якому кут
заломленняγдорівнює 90˚, тобто коли
заломлений промінь співпадає з границею
розділу середовищ, називаєтьсяграничним
кутом падіння світла.
Отже , при
світло у друге середовище не переходить
і це явище називаютьповним внутрішнім
Рис.V.2
відбиванням світла.
При α = Аформула(V.1) набуває вигляду:
.
Враховуючи, що sin90˚ = 1 маємо:
. (V.2)
Визначаючи в експериментах значення А, за формулою (V.2) знаходять відносний показник заломленняn21 другого середовища відносно першого. Якщо другим середовищем є розчин сухої речовини, то швидкістьv2в ньому, а значить і показник заломленняn21 залежить від концентрації розчину. Тому, визначаючи показник заломлення, отримують інформацію і про концентрацію розчину.
Для визначення показників заломлення і концентрації сухих речовин в розчинах використовують рефрактометри різної конструкції, в основі принципу дії яких лежить явище повного внутрішнього відбивання світла. Це явище використовується також у світловодах, що широко застосовуються у медицині, техніці та інших галузях.
V.3 Дисперсія світла
Числове значення швидкості світла в середовищі, а значить і показник заломлення, залежать як від речовини середовища, так і від довжини λ світлової хвилі.
Залежність показника заломлення середовища від довжини λ світлових хвиль називається дисперсією світла.
Якщо
світловий промінь, що складається із
світлових хвиль з різною довжиною λ
(наприклад, біле світло), переходить із
одного середовища в інше, то, внаслідок
дисперсії, хвилі з різними значеннями
λ після Рис.V.3
границі розділу середовищ
розповсюджуються в різних напрямках. Таким чином, складне випромінювання розкладається на спектр монохроматичних хвиль, кожна із яких у випадку видимого світла має певний колір. Це явище особливо чітко проявляється, коли біле світло пропускають через тригранну призму із прозорої речовини (наприклад, скляну)(рис. V.3).
За набором довжин монохроматичних хвиль (за видом спектра), що випромінюються тілом, та їх інтенсивністю отримують якісну та кількісну інформацію про хімічний склад тіла і міжмолекулярні взаємодії в ньому. Для цього використовують спектрометри і спектрографи, в основі принципу дії яких лежить явище дисперсії.