
- •«Национальный исследовательский
- •1.1. Цели преподаваемой дисциплины
- •1.2. Задачи изложения и изучения дисциплины
- •2. Содержание теоретического раздела дисциплины
- •2.1. Введение. Основные понятия и законы химии
- •2.2. Строение вещества
- •2.2.1. Строение атомов
- •2.2.2. Периодическая система элементов и изменение свойств элементов
- •2.3.2. Химическая кинетика
- •3. Содержание практического раздела дисциплины
- •3.1. Тематика практических занятий
- •3.2. Перечень лабораторных работ
- •4. Элементы теории и вопросы для самопроверки по темам курса. Предисловие
- •1. Химические формулы. Валентность
- •2. Номенклатура
- •3. Классификация неорганических соединений
- •Гидроксиды
- •4. Структурные формулы
- •Тема 1. Атомно-молекулярное учение
- •1.2. Газовые законы
- •1.3. Определение молекулярных масс веществ
- •1.4. Эквивалент. Эквивалентные массы.
- •Тема 1. Атомно-молекулярное учение и стехиометрия
- •Тема 2. Строение атома
- •2.1. Корпускулярно-волновое описание движения электрона в атоме
- •2.2 Волновая теория строения атома.
- •2.3. Квантовые числа
- •2.5. Периодическая система и изменение свойств элементов
- •1) При заполнении уровня и подуровня устойчивость электронной конфигурации возрастает и
- •2) Особой устойчивостью обладают заполненные (s2, p6, d10, f14) и наполовину заполненные (p3, d5, f7) конфигурации.
- •Тема 2. Строение атома
- •Тема 3. Химическая связь
- •3.1. Метод валентных связей (вс)
- •Приведённым схемам вс соответствуют структурные формулы (сф) (рис. 3.3), на которых связывающие электронные пары изображают чёрточками (валентная черта), а несвязывающие электроны – точками.
- •3.2. Метод молекулярных орбиталей (мо)
- •3.3. Теории металлической связи
- •3.4. Межмолекулярные взаимодействия
- •3.5. Кристаллические решетки
- •Тема 3. Химическая связь
- •3.6. Комплексные соединения
- •3.6.1. Определения, составные части и классификация
- •3.6.2. Равновесие в растворах комплексных соединений
- •3.6.3. Изомерия комплексных соединений
- •3.6.4. Химическая связь в комплексных соединениях
- •Тема 4. Элементы термодинамики
- •4.1. Основные понятия и определения
- •4.2. Тепловые эффекты химических реакций
- •4.2.2. Термохимические расчеты.
- •4.3. Направление химических реакций
- •4.3.1. Энтропия
- •4.3.2 Энтальпийный и энтропийный факторы.
- •Тема 4. Химическая термодинамика
- •Тема 5. Химическое равновесие
- •5.1. Химическое равновесие
- •5.2. Константа равновесия
- •Например, для обратимой реакции
- •5.3. Свободная энергия и константа равновесия
- •5.4. Смещение химического равновесия. Принцип Ле Шателье
- •Напоминаем, что в выражение константы равновесия гетерогенной реакции входят только концентрации газообразных веществ, так как концентрации твердых веществ остаются, как правило, постоянными.
- •Тема 5. Химическое равновесие
- •Тема 6. Химическая кинетика
- •6.1. Основные понятия и представления
- •6.2. Зависимость скорости химической реакции
- •6.3. Зависимость скорости от температуры
- •6.4. Катализ
- •Тема 6. Химическая кинетика
- •Тема 7. Концентрация растворов
- •7.1. Способы выражения концентрации растворов
- •Тема 7. Концентрация растворов
- •Тема8. Растворы
- •8.1. Свойства разбавленных растворов неэлектролитов
- •8.2. Растворы электролитов
- •8.2.1. Диссоциация кислот, оснований и солей
- •8.2.2. Свойства разбавленных растворов электролитов
- •8.2.3. Ионные реакции
- •8.2.4. Электролитическая диссоциация воды.
- •8.2.5. Гидролиз солей
- •Тема 8. Свойства растворов
- •Реакции в растворах электролитов
- •Тема 9. Окислительно-восстановительные реакции
- •9.1. Уравнивание овр
- •9.2. Типы окислительно-восстановительных реакций
- •9.3. Эквиваленты окислителя и восстановителя
- •Тема 9. Окислительно-восстановительные реакции
- •Тема 10 .Электрохимические процессы
- •10.1. Химические источники электрической энергии
- •10.2. Электролиз
- •10.3. Количественные законы электролиза
- •2. При прохождении одного и того же количества электричества через раствор или расплав электролита массы (объемы) веществ, выделившихся на электродах, прямо пропорциональны их химическим эквивалентам.
- •10.4. Коррозия металлов
- •Тема 10. Электрохимические процессы
- •Контрольные задания
- •1. Закон эквивалентов. Газовые законы
- •2. Строение атома
- •Периодическое изменение свойств элементов
- •3. Химическая связь
- •4. Энергетика химических реакций
- •Свободная энергия, энтропия. Направление химических реакций
- •Химическое равновесие. Смещение химического равновесия
- •6. Химическая кинетика
- •7. Концентрация растворов
- •8. Свойства разбавленных растворов неэлектролитов
- •Обменные реакции в растворах электролитов
- •Гидролиз солей
- •9. Окислительно-восстановительные реакции
- •10. Электрохимические процессы
- •Электролиз
- •Коррозия металлов
- •Комплексные соединения
- •Жесткость воды
- •Химия элементов
- •1. Цели и задачи учебной дисциплины. . . . . . . . . . . . . . . . . . . 3
- •Тема 2. Строение атома. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .37
- •Тема 3. Химическая связь. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
- •Тема 4. Элементы термодинамики . . . . . . . . . . . . . . . . . . . . . . .75
- •Тема 5. Химическое равновесие. . . . . . . . . . . . . . . . . . . .. . . . . . . 89
- •Тема 6. Химическая кинетика . . . . . . . . . . . . . . . . . . .. . . . . . . . . .97
- •Тема 7. Концентрация растворов . . . . . . . . . . . . . . . . . . . . . . .. . . 104
- •Тема8. Растворы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
- •Тема 9. Окислительно-восстановительные реакции. . . . .126
- •Тема 10. Электрохимические процессы. . . . . .. . . . . . . . . . . . . .132
1.4. Эквивалент. Эквивалентные массы.
Закон эквивалентов
Количественный подход к изучению химических явлений и установление закона постоянства состава показали, что вещества вступают во взаимодействие в определенных соотношениях масс, что привело к введению такого важного понятия, как “эквивалент”, и установлению закона эквивалентов.
Эквивалент - это частица или часть частицы, которая соединяется (взаимодействует) с одним атомом водорода или с одним электроном.
Из этого определения видно, что понятие “эквивалент” относится к конкретной химической реакции; если его относят к атому в химическом соединении, то имеют в виду реакцию образования этого соединения из соответствующего простого вещества и называют эквивалентом элемента в соединении.
В одной формульной единице вещества (В) может содержаться Zв эквивалентов этого вещества. Число Zв называют показателем эквивалентности.
Фактор эквивалентности (f) - доля частицы, составляющая эквивалент; f £ 1 и может быть равным 1, 1/2, 1/3 и т.д.
fВ
=
. (1.7)
Масса 1 моль эквивалентов, выраженная в граммах, называется молярной эквивалентной массой (Мэк) (г/моль); численно она равна относительной молекулярной массе эквивалента (кратко ее называют эквивалентной массой).
Мэк = fВ·М. (1.8)
Закон эквивалентов: массы взаимодействующих без остатка веществ соотносятся как их эквивалентные массы. Математическое выражение закона эквивалентов:
, (1.9)
где Мэк,1 и Мэк,2 - эквивалентные массы.
Пример 8. Определить эквивалент и эквивалентную массу кислорода в Н2О.
Решение. Такая формулировка вопроса предполагает реакцию образования молекулы воды из кислорода и водорода:
H2
+ ½O2
= Н2О,
то есть с 1 атомом водорода
соединяется ½
атомов кислорода.
Следовательно, Z(О)
= 2. Масса 1 моль атомов кислорода равна
16 г, отсюда
Мэк(O)
= М (О)·
=
= 8 г/ моль.
Эквиваленты одних и тех же элементов в различных химических соединениях могут различаться, так как величина эквивалента зависит от характера превращения, претерпеваемого им. Так, в соединении SO2 эквивалентная масса серы равна 8 г/моль, что составляет 1/4 от атомной массы, а в соединении SO3 - 5,3 г/моль, что составляет 1/6 от атомной массы серы (ZS = 4 и 6, соответственно). Практический расчет эквивалентной массы элемента в соединении ведут по формуле
Мэк
(элемента) = Аэк
=
, (1.10)
где А - атомная масса, ω - степень окисления элемента в данном соединении. (Ниже будет показано, что для реакции образования соединения из простых веществ ZВ = |ω|).
Например,
ZВ
(Mn) в соединении KMnO4
(ω = +7) составляет 7, а
Мэк
(Mn)
=
=
= 7,85 г/моль; в соединении Mn2O3
(ω = +3) – ZВ
= 3 и
Мэк
(Mn)
=
=
= 18,3 г/моль. (55-
масса 1-го моля атомов марганца или
атомная масса).
Эквивалентная масса вещества в химических реакциях имеет различные значения в зависимости от того, в каком взаимодействии это вещество участвует. Если во взаимодействии сложного вещества участвует его известное количество или известно количество реагирующих групп, то для расчета эквивалентных масс можно пользоваться следующими правилами и формулами.
а) Вещества друг с другом реагируют одинаковыми количествами эквивалентов. Например, в реакции
2Al + 3/2O2 = Al2O3
6 моль эквивалентов Al реагируют с таким же количеством кислорода (ZВ (Al) = 3, ZВ (O) = 2).
б) Эквивалентная масса кислоты в реакциях замещения ионов водорода равна:
М
эк.
кислоты
=
(1.11)
Пример 9. Определить эквивалент и эквивалентную массу H2SO4 в реакциях:
H2SO4 + KOH = KHSO4 + H2O ;
H2SO4 + 2KOH = K2SO4 + 2H2O .
Решение. В первой реакции заместился один ион водорода, следовательно, эквивалент серной кислоты равен 1, ZВ (H2SO4) = 1, Мэк(H2SO4) = М1 = 98 г/моль. Во второй реакции заместились оба иона водорода, следовательно, эквивалент серной кислоты равен двум молям, ZВ (H2SO4) = 2, а Mэк (H2SO4) = 98·½ = 49 г/моль.
в) Эквивалентная масса основания в реакции замещения ионов гидроксила равна:
Мэк.
основания
=
.(1.12)
Пример 10. Определить эквивалент и эквивалентные массы гидроксида висмута в реакциях:
1) Bi(OH)3 + HCl = Bi(OH)2Cl + H2O;
2) Bi(OH)3 + 3HCl = BiCl3 + H2O.
Решение. 1) ZВ Bi(OH)3 = 1, Mэк Bi(OH)3 = 260 г/моль (т. к. из трех ионов гидроксила заместился один);
2) ZВ
Bi(OH)3
= 3, a Mэк Bi(OH)3
= 260·= 86,3 г/моль (т. к. из трех ионов ОН-
заместились все три).
г) Эквивалентная масса соли в реакциях полного замещения катиона или аниона равна:
Мэк.
соли
=
или (1.13)
Мэк
соли
=
.
Так, ZВ Al2(SO4)3 = 3∙2 = 6. Однако в реакции эта величина может быть больше (неполное замещение) или меньше (комплексообразование). Если, например, это соединение участвует во взаимодействии по реакции
Al2(SO4)3 + 12KOH = 2K3[Al(OH)6] + 3K2SO4 ,
то при этом три аниона с суммарным зарядом 6 замещаются 12 ОН- ионами, следовательно, 12 эквивалентов этого вещества должно вступать в реакцию. Таким образом, ZВ Al2(SO4)3 = 12, а Мэк = М·fВ = 342/12 = 28,5 г/моль.
д) Эквивалентная масса оксида в реакциях полного замещения равна:
Мэк
оксида
=
.(1.14)
Например, ZВ (Fe2O3) = 3·2 = 6. Мэк = М(Fe2O3)·fВ = 160×1/6 = 26,6 г/моль. Однако в реакции
Fe2O3 + 4HCl = 2FeOHCl2 + H2O
ZВ (Fe2O3) = 4, Мэк = М(Fe2O3)∙fВ = 160×1/4 = 40 г/моль, так как Fe2O3 взаимодействует с четырьмя эквивалентами HCl (fВ = 1).
При решении задач, связанных с газообразными веществами, целесообразно пользоваться значением эквивалентного объема. Это объем, занимаемый одним молем эквивалентов газообразного вещества.
Пример 11. Рассчитайте эквивалентные объемы газообразных водорода и кислорода при н.у.
Решение. Для водорода при н.у. этот объем равен 11,2 литров (молярный объем Н2составляет 22,4 л, а так как Мэк(Н) = 1г (т.е. в 2 раза меньше, чем молярная масса), то эквивалентный объем будет в 2 раза меньше молярного, т. е. 11,2 л),для кислорода – 5,6л (молярный объем О2составляет 22,4 л, а так как Мэк(О) = 8г (т.е. в 4 раза меньше, чем молярная масса О2), то эквивалентный объем будет в 4 раза меньше, чем молярный.
Пример
12.На
восстановление 1,80 г оксида металла
израсходовано 883 мл водорода (н.у.).
Вычислить эквивалентные массы оксида
и металла.
Решение. Согласно закону эквивалентов (1.9) массы (объемы) реагирующих веществ пропорциональны их эквивалентным массам (объемам):
. Отсюда
(г/моль);
+
,
тогда
г/моль.
Пример 13. Вычислить эквивалентную массу цинка, если 1,168 г Zn вытеснили из кислоты 438 мл Н2 (t = 17 оС и Р = 750 мм рт. ст.).
Решение.
Согласно закону эквивалентов (1.9):
;
Из уравнения Менделеева-Клапейрона (1.4):
г,
=
32,6 г/моль.
д) Эквивалентная масса окислителя и восстановителя определяются делением молярной массы на изменение степени окисления в соответствующей реакции на 1моль.
Пример 14. Определить эквивалентные массы окислителя и восстановителя в реакции:
+6 +4 +3 +6
K2Cr2O7 + 3Na2SO3 + 4H2SO4 = Cr2(SO4)3 + 3Na2SO4 + K2SO4 + 4H2O.
Решение. Окислителем в этой реакции являетсяK2Cr2O7, а восстановителем –Na2SO3. Суммарное изменение степени окисления хрома вK2Cr2O7Dw(2Cr) = 2.(+3) – 2.(+6) = – 6; Поэтому
г/моль.
Суммарное изменение степени окисления серы в Na2SO3:Dw(S) = +6 – (+4) = +2;
Поэтому
г/моль.