
- •Тема 5 замедление нейтронов в реакторе и его размножающие свойства
- •5.1. Общие начальные рассуждения
- •Вероятность избежания утечки замедляющихся нейтронов - это доля нейтронов, избежавших утечки из активной зоны при замедлении, от всех нейтронов поколения, начавших процесс замедления в активной зоне.
- •5.2. Характеристики замедляющих свойств веществ
- •5.3. Возраст нейтронов в среде
- •Величину, обратную величине транспортного смещения
- •Возраст нейтронов с энергией е - это шестая часть среднего квадрата пространственного смещения нейтрона в среде при замедлении от начальной энергии Ео до данной энергии е.
- •5.4. Уравнение возраста Ферми и его решение
- •5.5. Вероятность избежания утечки замедляющихся нейтронов
- •Спектр замедляющихся нейтронов Ферми в гомогенной непоглощающей среде
- •5.7. Время замедления нейтронов в среде активной зоны
- •Краткие выводы
5.4. Уравнение возраста Ферми и его решение
5.4.1. Плотность замедления нейтронов. В каждом кубическом сантиметре объёма активной зоны реактора движутся большие количества нейтронов самых различных энергий. И мысленный "моментальный снимок" движущихся в единичном объёме среды по разным направлениям и с различными скоростями нейтронов способен вызвать ощущение хаоса, лишенного каких-либо закономерностей.
Но, поскольку движением нейтронов управляет Её Величество Среда, управляет в силу присущих ей природных (= физических, точнее, замедляющих) свойств, какая-то закономерность пространственно-энергетического распределения замедляющихся нейтронов в зависимости от замедляющих свойств среды должна быть. Одну из таких закономерностей (скорее всего, наиболее важную) описывает уравнение возраста Ферми.
Но прежде чем знакомиться с самим этим уравнением, рассмотрим одну из характеристик, фигурирующих в нём - с плотностью замедления нейтронов.
Плотность замедления q(E) нейтронов при данной энергии Е называется число нейтронов, ежесекундно пересекающих в процессе замедления в единичном объёме среды данный уровень энергии Е.
В соответствии с определением размерность q(E) - нейтр/см3с.
Чем должна определяться величина q(E) в реакторе?
- Во-первых, q(E) - величина локальная, поскольку трудно ожидать, чтобы в разных микрообъёмах активной зоны реакция деления шла с одинаковой скоростью, а, значит, и нейтроны деления рождались бы с одинаковой скоростью. Известный нам процесс утечки нейтронов, идущий, главным образом, из периферийных слоев активной зоны, конечно же, должен уменьшать плотность нейтронов любой энергии в периферийных объёмах активной зоны, и, значит, плотность нейтронов любой энергии в центральной области активной зоны должна быть выше, а на её периферии - ниже. Неравномерность распределения плотности нейтронов в объёме активной зоны должна порождать неравномерность скоростей генерации нейтронов деления, а последняя должна неизбежно порождать неравномерность распределения величины плотности замедления нейтронов в объёме активной зоны.
Иначе говоря, величина плотности замедления q(E) является функцией координат точек активной зоны, то есть q = f(E,r), имея в виду под r(x,y,z) краткое обозначение радиус-вектора точки активной зоны с указанными координатами.
- Во-вторых, плотность замедления должна зависеть от замедляющих свойств среды активной зоны, а, значит, - от какой-то из характеристик замедляющих свойств этой среды. Возраст нейтронов с энергией Е оказался наиболее подходящей из всех известных нам характеристик замедляющих свойств: в среде конкретного состава возраст однозначно связан с энергией нейтронов Е, и каждому определённому значению энергии Е замедляющихся нейтронов в среде соответствует своё определенное значение возраста (E) = ln(Eo/E)/3str.
Вот почему зависимость плотности замедления от координат, замедляющих свойств среды и энергии нейтронов можно записать более ёмко: q(r, E) = f (r, ).
Ради лучшего понимания сущности величины плотности замедления полезно задуматься о двух "крайних" частностях этой величины.
Первая: плотность замедления в начале процесса замедления, то есть при Е = Ео = 2 МэВ, при средней энергии, с которой рождаются нейтроны в реакторе и с которой они начинают замедляться. Если обозначить величину плотности замедления при Ео через qf, то эта величина в реакторе с полным основанием может быть названа скоростью генерации нейтронов деления, так как ясно: сколько нейтронов деления рождается ежесекундно в единичном объёме активной зоны - столько же их без задержки начинает процесс замедления в этом объёме, немедленно пересекая уровень энергии Ео.
Итак, qf = q(Eo) - это скорость генерации нейтронов деления.
Вторая частность: плотность замедления в конце процесса замедления нейтронов в активной зоне, т.е. при энергии Е = Ес. Эта величина может быть названа скоростью генерации тепловых нейтронов: сколько нейтронов пересекают ежесекундно в единичной объёме активной зоны уровень энергии Ес, - столько же их ежесекундно в этом единичном объёме становятся тепловыми нейтронами.
Итак, qт = q(Ec) - это скорость генерации тепловых нейтронов.
В общем же случае, в интервале энергий замедления Ес E Eo величина плотности замедления q = q(r,), разумеется, отлична от qf и от qт.
5.4.2. Уравнение возраста Ферми. При рассмотрении нейтронного цикла отмечалось, что подавляющее большинство веществ очень слабо поглощают эпитепловые нейтроны, и исключение из правила составляют резонансные захватчики замедляющихся нейтронов, среди которых выделяется 238U - обязательный компонент топлива активных зон большинства тепловых реакторов. Поэтому особенностью процесса реального замедления нейтронов в активных зонах сравнительно с замедлением в идеальных, не поглощающих замедляющиеся нейтроны средах, является непрерывное уменьшение количества замедляющихся нейтронов за счёт их резонансного захвата в процессе замедления.
Поэтому плотность замедления нейтронов любой энергии Е диапазона замедления в реальной активной зоне обязательно должна быть меньше, чем плотность замедления в той же активной зоне, лишённой резонансных захватчиков.
Это в большей степени существенно для гомогенного реактора, в котором все компоненты активной зоны (включая и резонансных захватчиков) равномерно распределены в активной зоне. Гетерогенного реактора это касается несколько меньше, т.к. подавляющее большинство нейтронов проходят процесс замедления в замедлителе - среде, почти не поглощающей эпитепловые нейтроны и расположенной отдельно от топливной композиции, в объёме которой содержится резонансный захватчик.
Относительно слабое поглощение эпитепловых нейтронов большинством материалов активной зоны в теории тепловых реакторов породило так называемое одногрупповое возрастное приближение, основная суть которого состоит в следующем:
- поглощение эпитепловых нейтронов считается не влияющим на процесс их замедления, то есть замедление в реальной активной зоне подчинено тем же закономерностям, что и в идеальной непоглощающей среде;
- снижение величины реальной плотности замедления в конце процесса замедления (qт) по сравнению с величиной плотности замедления в той же, но не поглощающей эпитепловые нейтроны, среде (qт*), можно учесть с помощью известного нам коэффициента - вероятности избежания резонансного захвата в активной зоне реактора:
qт = qт* (5.4.1)
Именно для непоглощающих эпитепловые нейтроны сред справедливо уравнение возраста Ферми:
(5.4.2)
Левая часть уравнения - производная функции плотности замедления по величине возраста нейтронов, а так как возраст нейтронов в конкретной среде однозначно связан с уровнем энергии замедляющихся нейтронов, то эта величина несет в себе неявный смысл скорости изменения плотности замедления по энергиям нейтронов.
Правая часть - оператор Лапласа от функции плотности замедления, то есть сумма вторых частных производных плотности замедления по координатам активной зоны.
В целом решение уравнения возраста для активной зоны конкретных геометрии и состава даёт функцию пространственного (то есть по координатам) и энергетического (то есть по возрастам, а значит - и по энергиям) распределения замедляющихся нейтронов в активной зоне в зависимости от замедляющих свойств среды активной зоны (которые, как мы видели ранее, скрыты в величине возраста). Возраст нейтронов фигурирует в уравнении Ферми в качестве сложной переменной.
5.4.3. Решение уравнения возраста. Уравнение возраста является дифференциальным уравнением второго порядка в частных производных, поэтому для получения конкретного его решения для условий активной зоны реактора необходимо указать пару начальных условий. В качестве последних можно использовать две упомянутых выше частности:
- при Е = Ео (Eo) = 0 и q*(r, 0) = qf*;
- при Е = Ес (Ec) = т и q*(r,т) = qт*.
Предположим, что решение уравнения возраста найдено в виде произведения двух функций:
q*(r,) = T() R(r), (5.4.3)
одна из которых Т() является функцией только возраста , а другая R(r) - функцией только координат r.
Если (5.4.3) - решение уравнения (5.4.2), то, будучи подставленным в (5.4.2), оно должно обращать последнее в тождество. Выполним эту подстановку, для чего найдём вначале выражения для dq*/d и 2q*:
dq*/d = R dT/dt, (5.4.4)
так как функция R переменной не содержит, а это значит, что при частном дифференцировании к ней можно относиться как к постоянной величине. Аналогично рассуждая,
2q* = T 2R, (5.4.5)
так как функция Т не содержит координат r.
Итак, подстановка (5.4.4) и (5.4.5) в (5.4.2) даёт тождество:
R dT/d T 2R, или, что то же:
(1/T) dT/d ( 2R) / R (5.4.6)
Задумавшись о том, когда может быть так, что две разные функции различных аргументов всегда тождественно равны друг другу при различных значениях этих аргументов, мы должны однозначно ответить так, как ответил Э.Ферми: это может быть только в том случае, если обе эти функции - есть постоянная величина.
Более того, связывая функцию (1/Т)dT/d с физическим смыслом зависимости плотности замедления q* от возраста , можно сказать, что эта постоянная величина (обозначим её - B2) должна иметь обязательно отрицательный знак, т.к. функция плотности замедления q*() не может быть возрастающей функцией с увеличением возраста нейтронов (иначе это противоречило бы физическому смыслу: число нейтронов в процессе их замедления может либо оставаться постоянным (в непоглощающей среде), либо убывать (за счёт поглощения и утечки), но никак не возрастать).
Поскольку B2 - присущая конкретному реактору величина, её принято называть параметром реактора.
С учётом принятого обозначения упомянутой постоянной величины тождество (5.4.6) можно переписать в виде двух отдельных равенств:
(1/Т) dT/d = - B2 (5.4.7)
( 2R)/R = - B2 (5.4.8)
Уравнение (5.4.7) представляет собой энергетическую часть решения уравнения возраста, в то время как уравнение (5.4.8) - пространственная его часть.
Общее решение дифференциального уравнения (5.4.7) имеет вид:
T = To exp(-B2),
где То - некоторое значение функции Т при = 0.
Cледовательно, плотность замедления q* в соответствии с (5.4.3) будет равна:
q* = RT = RTo exp(-B2) (5.4.9)
Используя для (5.4.9) первое граничное условие, имеем: qf* = RTo (5.4.10)
Но величину qf* - скорости генерации нейтронов деления - можно получить и из общих рассуждений, исходя из среднего значения плотности потока тепловых нейтронов в активной зоне реактора.
Если a - среднее по объёму активной зоны макросечение поглощения тепловых нейтронов, а Ф - средняя по её объёму плотность потока тепловых нейтронов, то:
- aФ - это средняя по объёму активной зоны скорость поглощения тепловых нейтронов в ней, а
- aФ - это средняя по объёму активной зоны скорость поглощения тепловых нейтронов делящимися под действием тепловых нейтронов ядрами, а
- aФ - средняя по объёму активной зоны скорость генерации нейтронов деления, полученных в делениях ядер топлива под действием тепловых нейтронов, а
- aФ - средняя скорость генерации всех нейтронов деления, полученных в делениях топлива нейтронами всех энергий; это и есть искомая нами величина
qf* = aФ = aФk /.
Сравнивая последнее выражение с (5.4.10), имеем:
k aФ/ = RTo, откуда R = k aФ/(То) (5.4.11)
Таким образом, общее решение (5.4.9) с учётом найденной величины функции R (5.4.11) будет иметь вид:
q* = RToexp(-B2) = (1/) k aФ exp(-B2] (5.4.12)
Выражение (5.4.12) - есть общее решение уравнения возраста Ферми, дающее величину плотности замедления q* при любом произвольном значении возраста . Из второго начального условия для плотности замедления тепловых нейтронов это выражение приобретает частный вид средней по объёму активной зоны скорости генерации тепловых нейтронов:
qт* = (1/) k aФ exp(-B2т) (5.4.13)
Напомним, что до сих пор речь велась о плотности замедления в идеальной не поглощающей замедляющиеся нейтроны среде. Подставляя найденную величину qт* в формулу (5.4.1), имеем:
qт = qт* = k aФ exp(- B2т) (5.4.14)
- выражение для скорости генерации тепловых нейтронов в реальной активной зоне с резонансными поглотителями замедляющихся нейтронов.