
- •Глава 1. Действие электрического тока на организм
- •Однополюсное (однофазное) прикосновение
- •Глава 2. Первая помощь
- •Глава 3.Электробезопасность электроустановок Термины и определения
- •Виды электрических сетей переменного тока
- •Параметры цепей связи токоведущих частей с землей, влияющие на безопасность электрических сетей
- •Сопротивление изоляции электротехнических изделий
- •Сопротивление изоляции сети
- •Емкость относительно земли
- •Устройство мегаомметра
- •Как правильно измерить сопротивление изоляции электроустановок
- •Измерения при снятом рабочем напряжении
- •Измерения в сетях постоянного тока
- •Метод уравновешенного моста.
- •Измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов.
- •Измерения в сетях переменного тока
- •Измерения в сетях двойного рода тока
- •Электрооборудование как источник пожара
- •Принципы горения вещества
- •Электрооборудование – пожароопасный фактор
- •Опасность пожаров в трассах кабелей
- •Нераспространение самостоятельного горения пучков кабелей
- •Защита трасс кабелей от пожаров
- •Глава 4. Расчет параметров электробезопасности электроустановок Общие требования к низковольтным аппаратам
- •Общие вопросы испытания нва
- •Токи утечки в электроустановках зданий
- •Коррозионное действие токов утечки
- •Магнитные поля промышленной частоты
- •Влияние эмп на компьютерное оборудование
- •Коррозионное действие токов утечки
- •Сравнительный анализ безопасности электрических сетей tn и тт1
- •Типы электрических сетей напряжением до 1 кВ
- •Электрическая сеть tn-c
- •Глава 5. Элементы защитного оборудования Предохранители. Общие сведения
Параметры цепей связи токоведущих частей с землей, влияющие на безопасность электрических сетей
При расчете и эксплуатации электрических сетей обычно рассматривается цепь «источник электроэнергии И-линия связи ЛС-приемник электроэнергии П» (рисунок 3.2, а). В ней обеспечивается необходимое качество электроэнергии и защита от аварийных пожароопасных ситуаций типа коротких замыканий и перегрузки, ведется учет потребления электроэнергии. Между тем подавляющее большинство электротравм происходит в так называемом режиме однофазного (однополюсного) прикосновения, то есть они формируются в других цепях, а именно в цепях, имеющих связь с землей: источник электроэнергии И – токоведущая часть – тело человека – земля – цепь связи сети с землей ZУ – токоведущая часть (рисунок 3.2. б).
Рисунок 3.2. Связь источников и приемников электроэнергии без учета (а)
и с учетом (б) цепей связи с землей.
Наибольшее количество пожароопасных ситуаций формируется также в режимах однофазного замыкания на землю. Очевидно, в обоих вариантах опасность режима зависит от параметров цепи Z -сопротивления изоляции, емкости, заземлений.
Сопротивление изоляции электротехнических изделий
Изоляционные материалы, применяемые в технике, не являются идеальными диэлектриками. Им всем присуща активная проводимость, характеризующаяся удельным объемным ρv и удельным поверхностным ρS сопротивлениями. Соответственно любая изоляционная конструкция (изоляция жил кабелей, изоляция обмоток электрических машин и т. п.) имеет конечное значение объемного RV и поверхностного RS сопротивлений. Значения последних зависят от значения удельных сопротивлений материалов и геометрических размеров конструкции.
Обычно оперируют понятием сопротивление изоляции электротехнического изделия R, как эквивалентным параллельному соединению RV и RS. Такой прием упрощает нормирование и контроль состояния изоляции. Так сопротивление изоляции отдельного коммутационного аппарата обычно не менее 100 МОм, обмоток электрических машин в нагретом состоянии не менее 10 МОм; значение сопротивления изоляции кабеля (сопротивление между токоведущей жилой и металлической оплеткой или между токоведущими жилами) зависит от длины отрезка кабеля и обычно при испытаниях на заводе-поставщике бывает не менее 100 МОм/км.
Численное значение сопротивления изоляции Rи, (то есть его составляющих Rv и Rs) изменяется под влиянием внешних эксплуатационных факторов. Поверхностное сопротивление RS может в тысячи раз уменьшиться при увлажнении или загрязнении. Объемное сопротивление Rv уменьшается при увлажнении изоляции или при повышении температуры ее нагрева.
Сопротивление изоляции изделий - величина, нормируемая ПУЭ и ПЭЭП при приемке новых изделий и при техническом обслуживании электрооборудования. При снижении его ниже установленных норм возможно формирование пожароопасных ситуаций из-за теплового пробоя изоляции.
При снижении сопротивления изоляции в месте повреждения (загрязнение, увлажнение и т. п.) увеличивается ток, протекающий под действием рабочего напряжения сети; соответственно повышается температура нагрева этого места. Повышение температуры нагрева изоляционного материала снижает его сопротивление, что приводит к соответствующему увеличению тока. Последнее вызывает новое повышение температуры и соответствующее дополнительное снижение сопротивления изоляции. Процесс нарастания электрического тока продолжается до тех пор, пока не установится равновесие между тепловыделением и теплоотводом (при какой-то установившейся температуре перегрева). В случае, когда условия охлаждения не соответствуют интенсивности тепловыделения в месте повреждения, наступает лавинообразное нарастание тока, приводящее к тепловому разрушению материала и дуговому замыканию. Поэтому при снижении сопротивления изоляции необходимо принимать меры к устранению неисправности.