
- •Important Information
- •Warranty
- •Copyright
- •Trademarks
- •Organization of This Manual
- •Conventions Used in This Manual
- •Related Documentation
- •Customer Communication
- •Introduction
- •Classes of External Code
- •Supported Languages
- •Macintosh
- •Microsoft Windows 3.1
- •Microsoft Windows 95 and Windows NT
- •Solaris
- •Steps for Creating a CIN
- •1. Place the CIN on a Block Diagram
- •2. Add Input and Output Terminals to the CIN
- •Input-Output Terminals
- •Output-Only Terminals
- •3. Wire the Inputs and Outputs to the CIN
- •4. Create .c File
- •Special Macintosh Considerations
- •5. Compile the CIN Source Code
- •Macintosh
- •THINK C for 68K (Versions 5-7)
- •Symantec C++ 8.0 for Power Macintosh
- •Metrowerks CodeWarrior for 68K
- •Metrowerks CodeWarrior for Power Macintosh
- •Microsoft Windows 3.x
- •Watcom C Compiler
- •Microsoft Windows 95 and Windows NT
- •Microsoft SDK C/C++ Compiler
- •Visual C++ for Windows 95 or Windows NT
- •Solaris 1.x
- •Solaris 2.x
- •6. Load the CIN Object Code
- •LabVIEW Manager Routines
- •Online Reference
- •Pointers as Parameters
- •Debugging External Code
- •DbgPrintf
- •Debugging CINs Under Windows 95 and Windows NT
- •Debugging CINs Under Sun or Solaris
- •Debugging CINs Under HP-UX
- •Introduction
- •CIN .c File
- •How LabVIEW Passes Fixed Sized Data to CINs
- •Scalar Numerics
- •Scalar Booleans
- •Refnums
- •Clusters of Scalars
- •Return Value for CIN Routines
- •Examples with Scalars
- •1. Place the CIN on the Block Diagram
- •2. Add Two Input and Output Terminals to the CIN
- •3. Wire the Inputs and Outputs to the CIN
- •4. Create the CIN Source Code
- •5. Compile the CIN Source Code
- •Macintosh
- •THINK C for 68K and Symantec C++
- •Microsoft Windows 3.x
- •Watcom C Compiler
- •Microsoft Windows 95 and Windows NT
- •Microsoft SDK Compiler
- •Microsoft Visual C++ Compiler
- •Solaris 1.x, Solaris 2.x, and HP-UX
- •6. Load the CIN Object Code
- •Comparing Two Numbers, Producing a Boolean Scalar
- •How LabVIEW Passes Variably Sized Data to CINs
- •Alignment Considerations
- •Arrays and Strings
- •Paths (Path)
- •Clusters Containing Variably Sized Data
- •Resizing Arrays and Strings
- •SetCINArraySize
- •NumericArrayResize
- •Examples with Variably Sized Data
- •Concatenating Two Strings
- •Working with Clusters
- •CIN Routines
- •Data Spaces and Code Resources
- •CIN Routines: The Basic Case
- •Loading a VI
- •Unloading a VI
- •Loading a New Resource into the CIN
- •Compiling a VI
- •Running a VI
- •Saving a VI
- •Aborting a VI
- •Multiple References to the Same CIN
- •Reentrancy
- •Code Globals and CIN Data Space Globals
- •Examples
- •Using Code Globals
- •Using CIN Data Space Globals
- •Calling a Windows 3.1 Dynamic Link Library
- •Calling a 16-Bit DLL
- •1. Load the DLL
- •2. Get the address of the desired function
- •3. Describe the function
- •4. Call the function
- •Example: A CIN that Displays a Dialog Box
- •The Block Diagram
- •The CIN Code
- •Compiling the CIN
- •Optimization
- •Introduction
- •Creating Shared External Subroutines
- •External Subroutine
- •Macintosh
- •THINK C Compiler and CodeWarrior 68K Compiler
- •MPW Compiler
- •Solaris 1.x, Solaris 2.x, and HP-UX
- •Calling Code
- •Macintosh
- •THINK C Compiler
- •CodeWarrior 68K Compiler
- •MPW Compiler
- •Solaris 1.x, Solaris 2.x, and HP-UX
- •Simple Example
- •External Subroutine Example
- •Compiling the External Subroutine
- •Macintosh
- •THINK C Compiler and CodeWarrior 68K Compiler
- •MPW Compiler
- •Microsoft Windows 3.1
- •Watcom C Compiler
- •Microsoft Windows 95 and Windows NT
- •Solaris 1.x, Solaris 2.x, and HP-UX
- •Calling Code
- •Compiling the Calling Code
- •Macintosh
- •THINK C Compiler
- •CodeWarrior 68K Compiler
- •MPW Compiler
- •Microsoft Windows 3.1
- •Watcom C Compiler
- •Microsoft Windows 95 and Windows NT
- •Solaris 1.x, Solaris 2.x, and HP-UX
- •Introduction
- •Basic Data Types
- •Scalar Data Types
- •Booleans
- •Numerics
- •Complex Numbers
- •char Data Type
- •Dynamic Data Types
- •Arrays
- •Strings
- •C-Style Strings (CStr)
- •Pascal-Style Strings (PStr)
- •LabVIEW Strings (LStr)
- •Concatenated Pascal String (CPStr)
- •Paths (Path)
- •Memory-Related Types
- •Constants
- •Memory Manager
- •Memory Allocation
- •Static Memory Allocation
- •Dynamic Memory Allocation: Pointers and Handles
- •Memory Zones
- •Using Pointers and Handles
- •Simple Example
- •Reference to the Memory Manager
- •Memory Manager Data Structures
- •File Manager
- •Introduction
- •Identifying Files and Directories
- •Path Specifications
- •Conventional Path Specifications
- •Empty Path Specifications
- •LabVIEW Path Specification
- •File Descriptors
- •File Refnums
- •Support Manager
- •Allocating and Releasing Handles
- •Allocating and Releasing Pointers
- •Manipulating Properties of Handles
- •AZHLock
- •AZHPurge
- •AZHNoPurge
- •AZHUnlock
- •Memory Utilities
- •ClearMem
- •MoveBlock
- •SwapBlock
- •Handle and Pointer Verification
- •Memory Zone Utilities
- •File Manager Data Structures
- •File/Directory Information Record
- •File Type Record
- •Path Data Type
- •Permissions
- •Volume Information Record
- •File Manager Functions
- •Performing Basic File Operations
- •FCreate
- •FCreateAlways
- •FMClose
- •FMOpen
- •FMRead
- •FMWrite
- •Positioning the Current Position Mark
- •FMSeek
- •FMTell
- •Positioning the End-Of-File Mark
- •FGetEOF
- •FSetEOF
- •Flushing File Data to Disk
- •FFlush
- •FExists
- •FGetAccessRights
- •FGetInfo
- •FGetVolInfo
- •FSetAccessRights
- •FSetInfo
- •Getting Default Access Rights Information
- •FGetDefGroup
- •FListDir
- •FNewDir
- •Copying Files
- •FCopy
- •Moving and Deleting Files and Directories
- •FMove
- •FRemove
- •Locking a File Range
- •FLockOrUnlockRange
- •Matching Filenames with Patterns
- •FStrFitsPat
- •Creating Paths
- •FAddPath
- •FAppendName
- •FAppPath
- •FEmptyPath
- •FMakePath
- •FNotAPath
- •FRelPath
- •Disposing Paths
- •FDisposePath
- •Duplicating Paths
- •FPathCpy
- •FPathToPath
- •Extracting Information from a Path
- •FDepth
- •FDirName
- •FName
- •FNamePtr
- •FVolName
- •FArrToPath
- •FFlattenPath
- •FPathToArr
- •FPathToAZString
- •FPathToDSString
- •FStringToPath
- •FTextToPath
- •FUnFlattenPath
- •Comparing Paths
- •FIsAPath
- •FIsAPathOrNotAPath
- •FIsEmptyPath
- •FPathCmp
- •Determining a Path Type
- •FGetPathType
- •FIsAPathOfType
- •FSetPathType
- •Manipulating File Refnums
- •FDisposeRefNum
- •FIsARefNum
- •FNewRefNum
- •FRefNumToFD
- •FRefNumToPath
- •Byte Manipulation Operations
- •Mathematical Operations
- •For THINK C Users
- •RandomGen
- •String Manipulation
- •BlockCmp
- •CPStrCmp
- •CPStrIndex
- •CPStrInsert
- •CPStrRemove
- •CPStrReplace
- •CPStrSize
- •CToPStr
- •HexChar
- •IsAlpha
- •IsDigit
- •IsLower
- •IsUpper
- •LStrCmp
- •LToPStr
- •PPStrCaseCmp
- •PPStrCmp
- •PStrCaseCmp
- •PStrCat
- •PStrCmp
- •PStrCpy
- •PStrNCpy
- •PToCStr
- •PToLStr
- •StrCat
- •StrCmp
- •StrCpy
- •StrLen
- •StrNCaseCmp
- •StrNCmp
- •StrNCpy
- •ToLower
- •ToUpper
- •Utility Functions
- •BinSearch
- •QSort
- •Time Functions
- •ASCIITime
- •DateCString
- •DateToSecs
- •MilliSecs
- •SecsToDate
- •TimeCString
- •TimeInSecs
- •Microsoft Windows 3.1, Windows 95, and Windows NT
- •Macintosh
- •How do I debug my CIN?
- •Can LabVIEW be used to call a DLL in Windows?
- •Glossary
- •Index

Chapter 1 CIN Overview
the same directory, you need either manually, or to create two separate the lvmkmf script) and use make CIN or external subroutine.
to combine the two makefiles makefiles (using the -o option to
-f <makefile> to create the
6. Load the CIN Object Code
Load the code resource by choosing Load Code Resource from the CIN pop-up menu. Select the .lsb file you created in step 5, Compile the CIN Source Code.
This command loads your object code into memory and links the code to the current front panel/block diagram. After you save the VI, the file containing the object code does not need to be resident on the computer running LabVIEW for the VI to execute.
If you make modifications to the source code, you can load the new version of the object code using the Load Code Resource option. The file containing the object code for the CIN must have an extension of
.lsb.
There is no limit to the number of CINs per block diagram.
LabVIEW Manager Routines
LabVIEW has a suite of routines that can be called from CINs and external subroutines. This suite of routines performs user-specified
LabVIEW Code Interface Reference Manual |
1-36 |
© National Instruments Corporation |
Chapter 1 CIN Overview
routines using the appropriate instructions for a given platform. These routines, which manage the functions of a specific operating system, are grouped into three categories, the memory manager, the file manager, and the support manager.
External code written using the managers is portable–you can compile it without modification on any platform that supports LabVIEW. This portability has two advantages. First, the LabVIEW application is built on top of the managers; except for the managers, the source code for LabVIEW is identical across platforms. Second, the analysis VIs are built mainly from CINs; the source code for these CINs is the same for all platforms.
For general information about the memory manager, the file manager, and the support manager, see Chapter 5, Manager Overview.
Online Reference
For desciptions of the functions, or of the file manager data structures, select Online Reference from LabVIEW’s Help menu. Click on the topic, Function and VI Reference, and then the relevant subtopic. Or see the Code Interface Node Reference online manual.
Pointers as Parameters
Some manager functions have a parameter that is a pointer. These parameter type descriptions are identified by a trailing asterisk (such as the hp parameter of the AZHandToHand memory manager function documented in the Online Reference) or are type defined as such (such as the name parameter of the FNamePtr function documented in the Online Reference). In most cases, this means the manager function will write a value to pre-allocated memory. In some cases, such as FStrFitsPath or GetALong, the function reads a value from the memory location, so you don’t have to pre-allocate memory for a return value.
© National Instruments Corporation |
1-37 |
LabVIEW Code Interface Reference Manual |
Chapter 1 CIN Overview
Table 1-1 lists the functions with parameters that return a value for which you must pre-allocate memory.
Table 1-1. Functions with Parameters Needing Pre-allocated Memory
AZHandToHand |
FGetInfo |
FPathToDString |
|
|
|
AZMemStats |
FGetPathType |
FPathToPath |
|
|
|
AZPtrToHand |
FGetVolInfo |
FRefNumToFD |
|
|
|
DateToSecs |
FMOpen |
FStringToPath |
|
|
|
DSHandToHand |
FMRead |
FTextToPath |
|
|
|
DSMemStats |
FMTell |
FUnflattenPath |
|
|
|
DSPtrToHand |
FMWrite |
GetAlong |
|
|
|
FCreate |
FNamePtr |
NumericArrayResize |
|
|
|
FCreateAlways |
FNewRefNum |
RandomGen |
|
|
|
FFlattenPath |
FPathToArr |
SecsToDate |
|
|
|
FGetAccessRights |
FPathToAZString |
SetALong |
|
|
|
FGetEOF |
|
|
|
|
|
It is important to actually allocate space for this return value. The following examples illustrate correct and incorrect ways to call one of these functions from within a generic function foo:
Correct example:
foo(Path path) {
Str255 buf; /* allocated buffer of 256 chars */
File fd;
MgErr err;
err = FNamePtr(path, buf);
err = FMOpen(&fd, path, openReadOnly, denyWriteOnly);
}
LabVIEW Code Interface Reference Manual |
1-38 |
© National Instruments Corporation |