
- •Москва 2003
- •Оглавление
- •Список сокращений
- •Тк - телекамера
- •Предисловие
- •Введение
- •1.Методологические основы построения систем физической защиты объектов
- •1.1. Определение характеристик и особенностей объекта
- •1.2. Определение задач, которые должна решать сфз
- •1.3. Определение функций, которые должна выполнять сфз
- •1.4. Принципы построения систем физической защиты
- •1.5. Определение перечня угроз безопасности объекта
- •1.6. Определение модели нарушителя
- •1.7. Определение структуры сфз
- •1.8.Определение этапов проектирования сфз
- •1.9.Вопросы для самоконтроля
- •2. Особенности систем физической защиты ядерных объектов
- •2.1.Термины и определения
- •2.2.Специфика угроз безопасности яо
- •2.3. Особенности модели нарушителя для сфз яо
- •2.4. Типовые структуры сфз яо
- •2.5. Организационно-правовые основы обеспечения сфз яо
- •2.6. Вопросы для самоконтроля
- •3. Особенности систем физической защиты ядерных объектов
- •3.1.Стадии и этапы создания сфз яо
- •3.2.Процедура концептуального проектирования сфз яо
- •3.3.Основы анализа уязвимости яо
- •3.4. Вопросы для самоконтроля
- •4. Подсистема обнаружения
- •4.1. Периметровые средства обнаружения
- •4.1.1. Тактико-технические характеристики периметровых систем
- •4.1.2. Физические принципы действия периметровых средств
- •4.1.3. Описание периметровых средств обнаружения
- •4.2. Объектовые средства обнаружения
- •4.2.1. Вибрационные датчики
- •4.2.2. Электромеханические датчики
- •4.2.3. Инфразвуковые датчики
- •4.2.4. Емкостные датчики приближения
- •4.2.5. Пассивные акустические датчики
- •4.2.6. Активные инфракрасные датчики
- •4.2.7. Микроволновые датчики
- •4.2.8. Ультразвуковые датчики
- •4.2.9. Активные акустические датчики
- •4.2.10. Пассивные инфразвуковые датчики
- •4.2.11. Датчики двойного действия
- •4.3. Вопросы для самоконтроля
- •5. Подсистема контроля и управления доступом
- •5.1. Классификация средств и систем контроля и управления доступом
- •5.1.1. Классификация средств контроля и управления доступом
- •5.1.2. Классификация систем контроля и управления доступом
- •5.1.3. Классификация средств и систем куд по устойчивости к нсд
- •5.2. Назначение, структура и принципы функционирования подсистем контроля и управления доступом
- •5.3. Считыватели как элементы системы контроля и управления доступом
- •5.4. Методы и средства аутентификации
- •5.5. Биометрическая аутентификация
- •5.6. Вопросы для самоконтроля
- •6. Подсистема телевизионного наблюдения
- •6.1. Задачи и характерные особенности современных стн
- •6.2. Характеристики объектов, на которых создаются стн
- •6.3. Телекамеры и объективы
- •6.3.1. Современные тк
- •6.3.2. Объективы
- •6.3.3. Технические характеристики тк
- •6.3.4. Классификация тк
- •6.4. Устройства отображения видеоинформации - мониторы
- •6.5. Средства передачи видеосигнала
- •6.5.1. Коаксиальные кабели
- •6.5.2. Передача видеосигнала по «витой паре»
- •6.5.3. Микроволновая связь
- •6.5.4. Радиочастотная беспроводная передача видеосигнала
- •6.5.5. Инфракрасная беспроводная передача видеосигнала
- •6.5.6. Передача изображений по телефонной линии
- •Сотовая сеть
- •6.5.7. Волоконно-оптические линии связи
- •6.6. Устройства обработки видеоинформации
- •6.6.1. Видеокоммутаторы.
- •6.6.2. Квадраторы.
- •6.6.3. Матричные коммутаторы
- •6.6.4. Мультиплексоры
- •6.7. Устройства регистрации и хранения видеоинформации
- •6.7.1.Специальные видеомагнитофоны
- •6.7.2. Цифровые системы телевизионного наблюдения
- •6.7.3. Мультиплексор с цифровой записьюCaliburDvmRe-4eZTфирмыKalatel, сша.
- •6.8. Дополнительное оборудование в стн
- •6.8.1. Кожухи камер
- •6.8.2. Поворотные устройства камер
- •6.9. Особенности выбора и применения средств (компонентов) стн
- •6.10.Вопросы для самоконтроля
- •7. Подсистема сбора и обработки данных
- •7.1. Назначение подсистемы сбора и обработки данных
- •7.2. Аппаратура сбора информации со средств обнаружения – контрольные панели.
- •7.3. Технологии передачи данных от со
- •7.4. Контроль линии связи кп-со
- •7.5. Оборудование и выполняемые функции станции сбора и обработки данных
- •7.6. Дублирование / резервирование арм оператора сфз
- •7.7. Вопросы для самоконтроля
- •8. Подсистема задержки
- •8.1. Назначение подсистемы задержки
- •8.2. Заграждения периметра
- •8.3. Объектовые заграждения
- •8.4. Исполнительные устройства
- •8.5. Вопросы для самоконтроля
- •9.Подсистема ответного реагирования
- •9.1. Силы ответного реагирования
- •9.2. Связь сил ответного реагирования
- •9.3. Организация систем связи с использованием переносных радиостанций
- •9.4. Вопросы для самоконтроля
- •10. Подсистема связи
- •10.1.Современные системы радиосвязи
- •10.1.1. Основы радиосвязи
- •10.1.2. Традиционные (conventional) системы радиосвязи.
- •10.1.3. Транкинговые системы радиосвязи
- •10.2. Система связи сил ответного реагирования
- •10.3. Организация систем связи с использованием переносных радиостанций
- •10.4. Системы радиосвязи с распределенным спектром частот
- •10.5. Системы радиосвязи, используемые на предприятиях Минатома России
- •10.6. Вопросы для самоконтроля
- •11. Оценка уязвимости систем физической защиты ядерных объектов
- •11.1.Эффективность сфз яо
- •11.2.Показатели эффективности сфз яо
- •11.3.Компьютерные программы для оценки эффективности сфз яо
- •11.4. Вопросы для самоконтроля
- •12. Информационная безопасность систем физической защиты ядерных объектов
- •12.1. Основы методология обеспечения информационной безопасности объекта
- •12.2. Нормативные документы
- •12.3. Классификация информации в сфз яо с учетом требований к ее защите
- •12.4. Каналы утечки информации в сфз яо
- •12.5. Перечень и анализ угроз информационной безопасности сфз яо
- •12.6. Модель вероятного нарушителя иб сфз яо
- •12.7. Мероприятия по комплексной защите информации в сфз яо
- •Подсистема зи
- •Организационные
- •Программные
- •Технические
- •Криптографические
- •12.8. Требования по организации и проведении работ по защите информации в сфз яо
- •12.9. Требования и рекомендации по защите информации в сфз яо
- •12.9.1. Требования и рекомендации по защите речевой информации
- •12.9.2. Требования и рекомендации по защите информации от утечки за счет побочных электромагнитных излучений и наводок
- •12.9.3. Требования и рекомендации по защите информации от несанкционированного доступа
- •12.9.4. Требования и рекомендации по защите информации в сфз яо от фотографических и оптико-электронных средств разведки
- •12.9.5. Требования и рекомендации по физической защите пунктов управления сфз яо и других жизненно-важных объектов информатизации
- •12.9.6. Требования к персоналу
- •12.10. Классификация автоматизированных систем сфз яо с точки зрения безопасности информации
- •12.10.1. Общие принципы классификация
- •12.10.2. Общие требования, учитываемые при классификации
- •12.10.3.Требования к четвертой группе Требования к классу «4а»
- •Требования к классу «4п»
- •12.10.4. Требования к третьей группе Требования к классу «3а»
- •Требования к классу «3п»
- •12.10.4.Требования ко второй группе Требования к классу «2а»
- •Требования к классу «2п»
- •12.10.5. Требования к первой группе Требования к классу «1а»
- •Требования к классу «1п»
- •12.11. Информационная безопасность систем радиосвязи, используемых на яо
- •12.11.1 Обеспечение информационной безопасности в системах радиосвязи, используемых на предприятиях Минатома России
- •12.11.2. Классификация систем радиосвязи, используемых на яо, по требованиям безопасности информации
- •Требования ко второму классу
- •Требования к классу 2а
- •Требования к первому классу
- •Требования к классу 1б
- •Требования к классу 1а
- •12.12. Вопросы для самоконтроля
- •Список литературы
4.2.9. Активные акустические датчики
Акустические датчики относятся к категории активных видимых волюмометрнческих датчиков. Вокруг акустических датчиков, испускающих звуковые волны с частотой от 500 до 1000 Гц, образуется поле обнаружения. Устройства этого типа могут функционировать в моностатическом, бистатическом и мультистатическом режимах. Так как в этом случае передаются низкочастотные сигналы, обеспечивается более эффективное отражение волн, и в защищаемом объеме может быть достигнуто состояние стоячей звуковой волны даже при использовании моностатического акустического датчика. Для надлежащего функционирования акустического датчика необходимо создавать стоячую волну, предотвращающую критическое уменьшение радиуса действия датчика.
Акустические датчики сходны с ультразвуковыми в том, что передающей средой для сигналов, испускаемых датчиками обоих типов, служит воздух. Основное различие между датчиками этих двух типов состоит в том, что акустические детекторы заполняют защищаемый объем волнами с частотой, соответствующей восприятию человеческого уха, в то время как ультразвуковые датчики не улавливаются ухом. Так как звуковые волны имеют большую длину, нежели неслышные ультразвуковые, они менее чувствительны к воздушным течениям, которые способны исказить характеристики ультразвуковых волн. Кроме того, акустические датчики менее чувствительны к перемещению таких объектов небольшого размера, как насекомые, кошки и мелкие грызуны, которые могут появиться в зоне обнаружения.
Для предотвращения подачи ложных сигналов тревоги системами датчиков, защищающими большие объемы или соседние помещения, датчики либо должны быть установлены на достаточном расстоянии один от другого, чтобы одни датчики не принимали сигналы, передаваемые другими, либо должны быть оборудованы синхронизированными генераторами сигналов.
В бистатических и мультистатических конфигурациях акустических датчиков используются вспомогательные передатчики (громкоговорители), используемые вместе с главным блоком управления. Принимающие компоненты датчика регистрируют изменения характеристик акустических волн, вызываемые перемещением объекта в защищаемом объеме. Регистрируются как изменения амплитуды звуковых волн, так и Допплеровские эффекты (изменения частоты) и фазовые смещения, что делает акустический датчик чрезвычайно чувствительным к любому перемещению предметов и объектов в помещении, заполненном отраженными звуковыми волнами.
Частоты, на которых передаются сигналы акустических датчиков, воспринимаются человеческим ухом и весьма неприятны для слушающего. Кроме того, помимо дистанционной передачи сигнала тревоги, датчики определенного типа оснащены аварийным устройством звукового оповещения (сиреной), испускающей в течение 90 секунд звук с частотой, варьирующей от 350 до 1100 Гц каждые 3 секунды. Мощность этого звукового сигнала может быть отрегулирована на уровне до 135 дБ. Так как система позволяет создавать стоячую волну в защищаемом объеме, затенение сигнала, как правило, не представляет собой значительной проблемы. С другой стороны, мощные сирены могут вызвать жалобы со стороны проживающих неподалеку людей. Так как звуковые волны могут проникать за пределы защищаемого помещения, акустические датчики обладают тем потенциальным преимуществом, что могут заставить диверсантов, услышавших характерный неприятный звук, отказаться от совершения задуманных действий.