
- •1. Предмет органической химии
- •2. Предпосылки теории строения
- •3. Особенности органических соединений
- •4. Теория химического строения органических соединений а.М. Бутлерова
- •5. Изомерия. Электронное строение атомов элементов малых периодов. Химическая связь
- •6. Гомологические ряды органических соединений
- •7. Классификация органических соединений
- •8. Типы органических соединений
- •9. Предельные углеводороды (алканы). Номенклатура алканов и их производных
- •10. Химические свойства метана и его гомологов
- •11. Строение и номенклатура углеводородов ряда метана
- •12. Химические свойства предельных углеводородов
- •13. Применение и получение предельных углеводородов
- •14. Алкины (ацетиленовые углеводороды)
- •15. Непредельные (ненасыщенные) углеводороды
- •16. Этилен и его гомологи
- •17. Строение и номенклатура углеводородов ряда этилена
- •18. Химические свойства углеводородов ряда этилена. Правило Марковникова
- •19. Применение и получение этиленовых углеводородов
- •20. Реакция полимеризации. Полиэтилен
- •21. Ацетилен и его гомологи
- •22. Химические свойства ацетилена
- •23. Применение и получение ацетилена
- •24. Диеновые углеводороды
- •25. Каучук и его свойства. Вулканизация каучука
- •26. Ароматические углеводороды (арены)
- •27. Бензол и его строение
- •28. Химические свойства бензола
- •29. Получение и применение бензола
- •30. Гомологи бензола
- •31. Природный и попутный нефтяной газ
- •32. Нефть и ее переработка
- •33. Нефть и нефтепродукты
- •34. Крекинг нефтепродуктов
- •35. Коксохимическое производство
- •36. Природные газы и их использование
- •37. Предельные спирты
- •38. Строение этилового спирта
- •39. Гомологический ряд спиртов
- •40. Химические свойства и применение предельных одноатомных спиртов
- •41. Метанол и этанол
- •42. Спирты как производные углеводородов. Промышленный синтез метанола
- •43. Понятие о ядохимикатах
- •1. Гербициды. Основные свойства:
- •2. Инсектициды. Особенности:
- •3. Фунгициды.
- •44. Многоатомные спирты
- •45. Фенолы
- •46. Альдегиды и их химические свойства
- •47. Применение и получение альдегидов
- •48. Формальдегид и ацетальдегид
- •49. Реакция поликонденсации. Углеводы
- •50. Кетоны
- •51. Одноосновные карбоновые кислоты
- •52. Химические свойства и получение карбоновых кислот
- •53. Муравьиная и уксусная кислоты
- •54. Пальмитиновая и стеариновая кислоты
- •55. Сложные эфиры
- •56. Жиры и углеводы
- •57. Гидролиз жиров в технике. Гидрирование жиров
- •58. Мыла и другие моющие средства
- •59. Глюкоза. Физические свойства
- •60. Химические свойства глюкозы и ее применение
- •61. Моносахариды
- •62. Дисахариды
- •63. Полисахариды
- •64. Рибоза и дезоксирибоза
- •65. Сахароза, ее физические и химические свойства
- •66. Крахмал и его строение
- •67. Крахмал как питательное вещество. Применение и получение крахмала
- •68. Целлюлоза, ее физические свойства
- •69. Химические свойства целлюлозы и ее применение
- •70. Получение ацетатного волокна
- •71. Нитросоединения
- •72. Амины
- •73. Анилин
- •74. Аминокислоты
- •75. Амиды кислот
- •76. Белки
- •77. Свойства белков. Превращение белков в организме
- •78. Проблема синтеза белков
- •79. Азотсодержащие гетероциклические соединения. Пиридин
- •80. Пиррол
- •81. Пиримидиновые и пуриновые основания
- •82. Нуклеиновые кислоты
- •83. Строение полинуклеотидов. Двойная спираль днк
- •84. Строение полимеров, свойства и синтез полимеров
- •85. Пластмассы
- •86. Полиэтилен и полипропилен
- •87. Поливинилхлорид и полистирол
- •88. Синтетические волокна
61. Моносахариды
Моносахариды – это простейшие углеводы. Они не подвергаются гидролизу – не расщепляются водой на более простые углеводы. Общая формула – Сn(H2O)n. Моносахариды представляют собой бесцветные кристаллические вещества, растворимые в воде и сладкие на вкус (фруктоза – самый сладкий сахар). Все они являются оптически активными веществами. Моносахариды являются полиоксикарбонильными соединениями, следовательно, классифицируются по числу углеродных атомов в молекуле и присутствию альдегидной или кетонной группы. Например: альдогексоза, кетопентоза и т. д.
Важнейшими моносахаридами являются альдопентозы: рибоза и дезоксирибоза, которые входят в состав нуклеиновых кислот; ксилоза (древесный сахар), который является составной частью ксиланов, содержащихся в древесине, лузге подсолнуха, соломе. Из альдогексоз самыми распространенными являются глюкоза и фруктоза.
В природе моносахариды образуются в зеленых растениях в результате фотосинтеза, который представляет собой процесс химического связывания или «фиксации» углекислого газа и воды за счет использования энергии солнечных лучей растениями.
Главным источником получения моносахаридов, имеющих практическое значение, являются полисахариды. Так, глюкозу получают в большом количестве гидролизом крахмала:
(С6H10O5)n + nН2О → nС6Н12O6.
Химические свойства. Для моносахаридов характерны реакции, свойственные спиртам, альдегидам и кетонам, так как в молекулах простых сахаров содержатся гидроксильные и в скрытом виде карбонильные группы. При взаимодействии моносахаридов с различными веществами реакции могут протекать: по карбонильной группе, гидроксильным группам либо с изменением углеродного скелета молекулы.
1. Альдегидная группа моносахаридов окисляется до карбоксильной группы с образованием альдоновых кислот.
2. При нагревании моносахаридов с концентрированными кислотами происходит дегидратация молекулы. Из пентоз образуется фурфурол, из гексоз – оксиметилфурфурол:
3. Моносахариды D-ряда (глюкоза, фруктоза, манноза) расщепляются при каталитическом действии ферментов дрожжей.
62. Дисахариды
Дисахариды – это углеводы, которые при нагревании с водой в присутствии минеральных кислот или под влиянием ферментов подвергаются гидролизу, расщепляясь на две молекулы моносахаридов.
Наиболее широко распространенным дисахаридом является сахароза (тростниковый или свекловичный сахар). Получают его из сахарного тростника или из сахарной свеклы. В молоке содержится 5 % лактозы – молочного сахара. Мальтоза содержится в прорастающем зерне и образуется при гидролизе зернового крахмала. Целлобиоза является промежуточным продуктом при ферментативном гидролизе целлюлозы.
Строение. Молекула дисахарида состоит из двух молекул моносахаридов, соединенных гликозидной связью. В зависимости от того, какие атомы углерода участвуют в образовании гликозидной связи, молекула дисахарида может или не может содержать свободную карбонильную группу.
Дисахариды можно разделить на две группы: невосстанавливающие и восстанавливающие. Невосстанавливающие сахара не имеют ОН-группы ни при одном аномерном центре, восстанавливающие – имеют свободную ОН-группу при аномерном центре.
Невосстанавливающие сахара называют гликозил-гликозидами; восстанавливающие – гликозил-гликозами.
Мальтоза – восстанавливающий дисахарид, образующийся при ферментативном гидролизе крахмала. Мальтоза состоит из двух остатков D-глюкозы, соединенных гликозидной связью по положениям 1,4.
Целлобиоза, или 4-(β-глюкозидо) – глюкоза построена также, как и мальтоза, но представляет собой β-гликозид.
Сахароза состоит из остатков глюкозы и фруктозы, соединенных 1,2-гликозидной связью. У сахарозы полуацетальные гидроксильные группы обеих молекул моносахаридов участвуют в образовании гликозидной связи, вследствие чего сахароза является невосстанавливающим сахаром.
Химические свойства дисахаридов:
1) способность гидролизоваться: под действием кислоты или соответствующего фермента разрывается гликозидная связь и образуются два моносахарида;
2) окисляются ионами меди, серебра, ртути, образуют озазоны и вступают во все реакции, характерные для соединений, содержащих свободные карбонильные группы;
3) дисахариды могут быть окислены до диоксида углерода и воды. Под действием ферментов дрожжей сахароза и мальтоза дают этанол, а лактоза не изменяется.