
- •Содержание
- •Введение
- •Техника безопасности при выполнении лабораторных работ по химии
- •Лабораторная работа №1. Тема: «Основные классы неорганических соединений» (окнс)
- •Теоретическая часть
- •7. Рекомендуется использовать традиционные (тривиальные) названия веществ,
- •Экспериментальная часть Опыт 1. Химические свойства кислот и оснований. А) Ознакомление со свойствами кислот и оснований.
- •Б) Взаимодействие кислот с металлами.
- •Опыт 2. Получение и свойства нерастворимых и амфотерных оснований.
- •Лабораторная работа № 2. Окислительно-восстановительные реакции
- •ТеорЕтическая часть
- •Экспериментальная часть
- •Межмолекулярные
- •Окислительно-восстановительные реакции.
- •Опыт 1. Окислительно-восстановительные свойства простых веществ.
- •Опыт 2. Восстановительные свойства металлов.
- •Опыт 3. Взаимодействие металлов с кислотами-окислителями.
- •Опыт 4. Взаимодействие металлов с растворами солей.
- •Опыт 5. Восстановительные свойства элементов в минимальной степени окисления.
- •Опыт 6. Окислительно-восстановительная двойственность.
- •Опыт 7. Влияние характера среды на протекание окислительно-восстановительных реакций.
- •Опыт 1. Взаимодействие бромной воды с гидроксидом натрия.
- •Контрольные Вопросы и упражнения.
- •Лабораторная работа № 3. Тема: «Электролиз»
- •Теоретическая часть
- •Экспериментальная часть Опыт 1. Электролиз водного раствора хлорида натрия.
- •Опыт 2. Электролиз водного раствора иодида калия.
- •Опыт 3. Электролиз хлорида (сульфата) цинка.
- •Опыт 4. Электролиз раствора сульфата меди.
- •Опыт 5. Электролиз с нерастворимым и растворимым анодами.
- •Опыт 6. Электролиз раствора ацетата свинца.
- •Опыт 7. Электролиз раствора сульфата натрия.
- •Опыт 8. Определение электрохимического эквивалента меди.
- •Контрольные упражнения и задачи.
- •Литература
- •Приложение
- •644099, Г. Омск, ул. И.Алексеева, 4
- •644012, Г. Омск, ул. 9 Дунайская, 20
Лабораторная работа № 2. Окислительно-восстановительные реакции
Цель работы:
Освоить методику проведения окислительно-восстановительных реакций. Отметить зависимость продуктов данного вида реакций от условий их протекания.
Основные понятия.
Степень окисления. Степень окисления элемента в простых и сложных веществах. Окислительно-восстановительные реакции и их отличие от реакций ионного обмена. Процесс окисления и процесс восстановления. Окислители и восстановители. Составление уравнений окислительно-восстановительных реакций (метод электронного баланса, ионно-электронные уравнения).
Важнейшие окислители и восстановители. Типы окислительно-восстановительных реакций.
ТеорЕтическая часть
Одними из важнейших химических процессов являются окислительно-восстановительные реакции. Именно реакции этого типа лежат в основе многих промышленных процессов: получение серной и азотной кислоты, доменные процессы, электрометаллургия, производство красителей, лекарств.
Окислительно-восстановительные реакции широко используются в добыче нефти и газа (окислители используются для нейтрализации сероводорода, сопутствующего нефтям и природным газам).
Инженерам - механикам также следует учитывать возможное протекание окислительно-восстановительных процессов, возникающих при горении топлива, коррозии металлов и их сплавов в различных средах. Окислительно-восстановительные реакции лежат в основе преобразования энергии взаимодействующих химических веществ в электрическую энергию в гальванических и топливных элементах.
Кроме того, окислительно-восстановительные реакции чрезвычайно распространены в живой и неживой природе, например, биохимические процессы (дыхание, брожение, фотосинтез) в живых организмах.
Типы окислительно-восстановительных реакций.
Все химические реакции, в которых электроны переходят от одного вещества или его части (восстановителя) к другому веществу или к другой части одного и того же вещества (окислителю), называются окислительно-восстановительными, или редокс-процессами.
Любому веществу-окислителю (ox1) соответствует восстановленная форма (red1), а восстановителю (red2) – окисленная форма (ox2), вместе они образуют сопряженную окислительно-восстановительную пару (полуреакцию):
оx1 + ne = red1
red2 – ne = оx2
Сложение обеих полуреакций позволяет записать в общем виде окислительно-восстановительную реакцию:
ох1+ red2 = red1+ оx2
Если передача электронов от восстановителя к окислителю происходит во всем объеме раствора, то энергия химического взаимодействия рассеивается в окружающую среду в виде тепла (ΔH < 0).
В зависимости от того, находятся ли атомы, выполняющие в реакции функцию окислителя (акцептора электронов) и восстановителя (донора электронов) в одном или в различных веществах, все окислительно-восстановительные процессы можно разделить на три типа: межмолекулярные, внутримолекулярные и диспропорционирования.
В межмолекулярных (межатомных) реакциях окислительные функции выполняют одни вещества, а восстановительные – другие.
Например, в реакции:
H2S + Cl2 → S + 2HCl электроны от восстановителя – иона S2– – переходят к окислителю – молекуле Cl2.
В реакциях внутримолекулярного окисления-восстановления одна часть молекулы – окислитель, другая – восстановитель. Простейшими примерами могут служить реакции термического разложения вещества:
2NO2 → 2NO + O2
(NH4)2Cr2O7 → N2 + Cr2O3 + 4H2O
Реакции диспропорционирования (самоокисления-самовосстановления) протекают с одновременным уменьшением и увеличением степени окисления атомов одного и того же элемента. Они характерны для соединений или простых веществ, состоящих из промежуточных степеней окисления данного элемента:
Cl2 + H2O → HCl + HClO
4KClO3 → 3KClO4 + KCl