Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая работа ТЭП (заочн).doc
Скачиваний:
150
Добавлен:
29.05.2015
Размер:
1.26 Mб
Скачать

10 Выбор системы управления

Частотное регулирование позволяет устранить один из существенных недостатков электродвигателей с короткозамкнутым ротором – постоянную частоту вращения ротора электродвигателя, не зависящую от нагрузки. Частотное регулирование создает возможность управления скоростью электродвигателя в соответствии с характером нагрузки. Это в свою очередь позволяет избегать сложных переходных процессов в электрических сетях, обеспечивая работу оборудования в наиболее экономичном режиме.

Частотное регулирование электродвигателя эффективно используют на промышленных предприятиях, в области энергетики, коммунальном хозяйстве и других сферах. Это связано с тем, что частотное регулирование позволяет автоматизировать производственные процессы, экономично расходовать электроэнергию и другие задействованные в производстве ресурсы, повышать качество выпускаемой продукции, а также увеличивать надежность работы всей системы в целом.

Частотное регулирование также позволяет улучшить безотказность работы и долговечность технологической системы. Это обеспечивается за счет снижения пусковых токов, устранения перегрузок элементов системы и постепенной выработки моточасов оборудования. Для частотного регулирования используются частотные преобразователи со встроенными в них ПИД-регуляторами (пропорционально-интегрально-дифференциальные регуляторы), обеспечивающими точное регулирование заданных технологических параметров.

Преобразователи частоты, в отличие от других устройств регулирования скорости двигателя, таких как гидравлическая муфта, система генератор-двигатель, механический вариатор, позволяют избегать различных недостатков в работе системы. Речь идет об узком диапазоне регулирования оборудования, сложностях с его эксплуатацией, низким качеством производимых работ и неэкономичности всей системы.

Таблица 2 – Типы преобразователей частоты фирмы Mitsubishi

Выбранный асинхронный электродвигатель имеет мощность 7.5 кВт , поэтому выбираем преобразователь частоты марки FR-A520-7.5K

Рис.6 - Схема подключения преобразователя частоты к питающей сети и электродвигателю

Таблица 5 – Описание силовых клемм

Преобразователи частоты предназначены для регулировки частоты вращения и момента на валу асинхронного или синхронного электродвигателя. Преобразователь частоты – это прибор, предназначенный для преобразования переменного тока (напряжения) одной частоты (обычно частоты питающей сети) в переменный ток (напряжение) другой частоты. Выходная частота в современных инверторах может быть как ниже, так и выше частоты питающей сети.

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть преобразователей выполнена на транзисторах IGBT, работающих в режиме электронных ключей. Схема управления выполняется на цифровых микроконтроллерах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (защита, контроль, диагностика). Частотные инверторы Частотный регулятор имеет структуру с явно выраженным блоком постоянного тока (выпрямитель + фильтр), что проиллюстрировано на рисунках 7 и 8.

В преобразователях этого типа используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в трехфазном или однофазном выпрямителе, сглаживается LC-фильтром, а затем вновь преобразуется инвертором в переменное напряжение регулируемой частоты и амплитуды.

Рис. 7. Структурная схема частотных преобразователей со звеном постоянного тока

Рис. 8. Временные диаграммы работы частотного преобразователя

Преобразователи частоты на транзисторах IGBT по сравнению с тиристорными при одинаковой выходной мощности отличаются меньшими габаритами, сниженной массой и повышенной надежностью в силу модульного исполнения электронных ключей и лучшего отвода тепла с поверхности силового модуля. Они имеют более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность повреждений и отказа электропривода.

Более подробно принцип работы частотного инвертора показан на рис.8. В верхней части рисунка 8 приведены графики напряжений на выходе каждого каскада преобразователя.

Напряжение питающей сети с постоянной частотой и амплитудой (Uвх = const; fвх = const) поступает на трехфазный или однофазный выпрямитель. Выпрямитель и фильтр входят в состав блока постоянного тока, основное назначение которого – получить на выходе постоянное напряжение с малыми пульсациями, которое используется для питания преобразователя частоты. Инвертор преобразует постоянное напряжение в трехфазное напряжение с переменной частотой и изменяемой амплитудой. Схема управления формирует сигналы для коммутации обмоток электродвигателя в нужные моменты времени. Импульсы коммутации каждой обмотки в пределах периода модулируются по синусоидальному закону. Максимальную ширину импульсы имеют в середине полупериода. К началу и к концу полупериода ширина импульсов уменьшается. Таким образом, схема управления формирует широтно-импульсную модуляцию (ШИМ) напряжения, которое подается на обмотки электродвигателя. В некоторых случаях к выходам преобразователя частоты подключается фильтр, но в частотных инверторах на транзисторах IGBT необходимость в выходном фильтре практически отсутствует. Таким образом, на выходе инвертора формируется трехфазное напряжение переменной частоты и амплитуды (fвых = Var; Uвых = Var), которое и задает нужную частоту вращения и требуемый момент на валу двигателя.

Схемы управления двигателем

Схемы управления двигателем можно разделить на три основных типа:

  • управление по закону U/f (регулировка отношения напряжения к частоте или вольт-частотное регулирование);

  • векторное управление полем электродвигателя;

  • прямое управление моментом на валу двигателя.

Схемы управления перечислены по возрастанию функциональности и цены. Во многих случаях в инверторах используются схемы управления нескольких типов. В большинстве случаев достаточно первых двух типов управления, но при больших перегрузках и широком диапазоне изменения нагрузки на валу двигателя необходимо прямое управление моментом.