
- •Курс лекций
- •Оглавление.
- •Введение
- •1. Проектирование. Типовая логическая схема проектирования.
- •1.1. Основные определения процесса проектирования
- •1.2. Системы проектирования.
- •1.3.Стадии и этапы проектирования.
- •1.4. Подходы к конструированию на основе компьютерных технологий.
- •2. Системы автоматизации подготовки производства, управления производством, технической подготовки производства.
- •2.1. Cad/cam системы.
- •2.2.Комплексные автоматизированные системы.
- •3. Системы автоматизированного проектирования. Структура и разновидности сапр.
- •3.1 Концепция формирования сапр, как инструмента для разработки объекта
- •3.2. Разновидности сапр.
- •4. Сапр как сложная система.
- •4.1. Функциональные подсистемы.
- •4.2. Обеспечение сапр - виды, назначение.
- •5. Математическое Обеспечение сапр.
- •5.1. Состав и функции мо сапр.
- •5.2.Общая модель объекта проектирования.
- •5.3. Задачи анализа, оптимизации и синтеза.
- •5.4. Задачи структурного и параметрического синтеза.
- •5.5. Задачи оптимизации.
- •5.6. Задачи линейного программирования
- •5.6.1. Модель задачи лп.
- •5.6.3. Геометрическая интерпретация задачи лп
- •5.6.4. Основная идея методов решения задач лп
- •5.6.5.Симплекс-метод решения задач линейного программирования
- •6.Лингвистическое Обеспечение сапр.
- •6.1.Состав и функции ло сапр.
- •6.2. Языки проектирования и требования к ним
- •6.3. Языки описания схем и моделирования.
- •7.Техническое обеспечение сапр
- •7.1. Системные требования.
- •7.2. Функциональные требования.
- •7.3. Технические требования.
- •7.4. Организационно-эксплуатационные требования.
- •7.5. Состав и функции то сапр
- •8. Основы машинной графики и вычислительной геометрии.
- •8.1. Методы машинной графики.
- •8.2. Основные способы хранения графической информации.
- •2. Поэлементный протокол построения.
- •8.3. Способы представления графических элементов.
- •3. Табулированная функция.
- •8.4. Примеры вычислительной геометрии.
- •8.5. Преобразования координат в 2d пространстве.
- •9. Геометрическое моделирование
- •9.1. Виды геометрических моделей
- •9.2. Система unigraphics. (cad/cam – система).
- •5.Разработка технологического процесса для изготовления детали с применением модуля Manufacturing/Обработка.
- •9.2.1.Модуль Modeling/Моделирование.
- •Преимущества твердотельного моделирования:
- •9.2.2. Модуль Assemblies/Сборки.
- •Основные характеристики модуля.
- •Термины и определения.
- •Анализ сборки
- •Клонирование сборок.
- •Виды с разнесенными компонентами.
- •Фильтрация компонентов.
- •9.2.3.МодульManufacturing/Обработка.
- •Модули Manufacturing:
- •Модуль Lathe - Токарная обработка
- •10. Основы конструкторского проектирования.
- •10.1. Основные задачи коммутационно-монтажного проектирования.
- •10.1.1. Принцип проектирования сборочных единиц
- •10.1.2. Основная задача в сапр эвм
- •10.1.3. Основная задача конструкторского проектирования в сапр иэт
- •10.1.4. Проблема оптимизации задачи проектирования
- •10.2. Основные сведения теории графов
- •10.3. Матричные эквиваленты для алгебраического задания графов
- •10.4. Графотеоретические модели монтажного пространства и коммутационных схем.
- •10.4.1. Определение монтажного пространства
- •10.4.2. Модели коммутационной схемы
- •10.4.3. Полная математическая модель коммутационной схемы
- •11. Постановка и методы решения задач конструкторского проектирования
- •11.1. Задача покрытия
- •11.1.1. Исходные данные для задачи покрытия
- •11.2. Задача разбиения
- •11.2.1. Исходные данные для задачи разбиения
- •11.3. Задача размещения
- •11.3.1. Исходные данные для задачи размещения
- •11.3.2. Главная цель задачи размещения
- •11.4. Задача трассировки
- •11.4.1. Исходные данные для решения задач трассировки
- •11.4.2. Перечень проводников
- •11.4.5. Трассировка соединений
- •Список литературы.
9. Геометрическое моделирование
При решении большинства задач в области автоматизированного конструирования и технологии промышленного производства необходимо учитывать форму проектируемого объекта, поэтому в их основе лежит геометрическое моделирование.
Модель - это математическое и информационное представление объекта, сохраняемое в памяти ЭВМ.
Под геометрическими моделями понимают модели, содержащие информацию о геометрии изделия, технологическую, функциональную и вспомогательную информации.
Под геометрическим моделированием понимают весь процесс обработки от вербального (словесного на некотором языке) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления.
9.1. Виды геометрических моделей
В геометрическом моделировании объект можно представить в виде:
Каркасная (проволочная) модель (рис. 1)
Поверхностная (полигональная или фасетная) модель (рис. 2)
Твердотельная (объемная) модель (рис. 3)
I) Каркасная: конструктивными элементами являются ребра и точки. Эта модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей. Каркасные модели удобны для представления двумерных геометрических объектов на плоскости, на основе каркасной модели можно получать их проекции. Но в ряде случаев они дают неоднозначное представление и имеют ряд недостатков:
Неоднозначность, нельзя отличить видимые линии от невидимых, можно по-разному интерпретировать изображение;
Невозможность распознавания криволинейных граней, и, в следствии этого сложности тонирования;
Сложность обнаружения взаимного влияния компонентов.
Каркасные модели не используются для анимации. Возникают трудности при вычислении физических характеристик: объем, масса, и т.д. Используются такие модели преимущественно для самых общих построений.
II) Поверхностные модели: при построении такой модели предполагается, что технологические объекты ограничены плоскостями, которые ограничивают их от окружающей среды. Конструктивными элементами являются точки, ребра и поверхности. Здесь используются также различные криволинейные поверхности, что позволяет задавать тоновые изображения.
Поверхность технологического объекта, как и в каркасном моделировании, получается ограниченной контурами, но в полигонном моделировании эти контуры являются результатом двух касающихся или пересекающихся поверхностей. Здесь часто используются аналитические кривые, т.е исходные кривые описываемые некоторой сложной математической зависимостью.
Поверхностные модели дают возможность удобства скульптурного изображения, т.е любую поверхность можно внести как элементарную и в дальнейшем использовать ее для формирования сложных изображений. Использование таких поверхностных моделей позволяет легко изобразить сопряжение поверхностей.
Недостатком полигонного моделирования является то, что чем больше задающих поверхностей необходимо для описания объекта, тем сильнее полученная модель будет отличаться от его реальной формы, и тем выше количество обрабатываемой информации, а значит и определенные сложности в воспроизведении первоначального объекта.
III) Твердотельные модели. Конструктивными элементами твердотельных моделей являются: точка, контурный элемент и поверхность.
Для объемных моделей объектов существенно разграничение точек на внутренние и внешние, по отношение к объектам. Для получения таких моделей сначала определяются поверхности, ограничивающие объект, и затем они собираются в объект.
Полное определение объемной формы, возможность автоматического построения разрезов, сборок, удобное определение физических характеристик: массы, объема, и т.д., удобная анимация. Это используется для моделирования, обработки различными инструментами любых поверхностей.
Разнообразная палитра цветов дает возможность получения фотоизображения.
В качестве базовых примитивов используются различного вида отдельные элементы: цилиндр, конус, параллелелепипед, усеченный конус.
В основе построения сложных объемов из примитивов лежат булевы операции:
-
пересечение;
-
объединение;
/ - разность.
Их использование базируется на теоретико-множественном представлении об объекте как множестве точек принадлежащих тому или иному телу. Операция объединения предполагает объединение всех точек принадлежащих обоим телам (объединение нескольких тел в одно); пересечение – всех точек, лежащих на пересечении (результат- тело, которое содержит частично оба исходных тела); разность – вычитание одного тела из другого.
Все эти операции могут применяться последовательно над базовыми элементами и промежуточными результатами, получая нужный объект.
Таким образом строятся все детали в машиностроении: добавляются бобышки, вырезаются отверстия, пазы, проточки, и т.д.
Обособленным случаем объемной модели являются конструктивные модели, в которых геометрические объекты представляются в виде структур. Известны следующие способы построения таких структур:
1. Объем определяется как совокупность ограничивающих его поверхностей.
2. Объем определяется комбинацией элементарных объемов, каждый из которых обращается в соответствии с пунктом 1.
3D Моделирование позволяет самое удобное получение физических характеристик, удобно для выполнения имитации механической обработки.
В настоящее время существует большое число пакетов 3D моделирования. Остановимся на UNIGRAPHICS. (HP)