
- •Бесполезная геометрия? Или: потерянная геометрия окружности и симметрий. Предисловие.
- •Оглавление
- •Бесполезная геометрия? Или: потерянная геометрия окружности и симметрий. Статья 1.Новое решение задачи Аполлония о проведении окружности, касающейся трех данных. Краткое содержание статьи.
- •Сколько искомых окружностей?
- •Фундаментальные понятия:
- •Определение и основные свойства инверсии:
- •Перпендикуляр, опущенный на окружность.
- •Решение задачи Аполлония. (Для важнейшего частного случая)
- •Вопросы.
- •Статья 2.Теорема о шести окружностях или теорема о четырех пучках. Пучки окружностей, их определение, виды и свойства. Краткое содержание.
- •Формулировка теоремы.
- •Стандартное или школьное доказательство.
- •Второе доказательство.
- •Третье доказательство.
- •Снова про инверсии.
- •Уточнение и мнимая инверсия.
- •Пучки окружностей
- •Дополнение о прямых и точках на плоскости.
- •Связь пучков окружностей и пучков прямых.
- •Статья 3.Разные теоремы про окружности. Краткое содержание статьи.
- •Три взаимнокасающиеся окружности.
- •Биссектриса и система касающихся окружностей.
- •Разные случаи расположения окружностей, касающихся двух данных.
- •Теоремы о пересекающихся окружностях и перестановки четырех точек.
- •Тройственные симметрии.
- •Четыре касающиеся друг друга окружности.
- •Четыре касающиеся друг друга сферы.
- •Теорема Штайнера о системе касающихся друг друга окружностей.
- •Статья 4.Моделирование проективной геометрии с помощью геометрии окружности и сферы. Краткое содержание статьи.
- •Моделирование проективной плоскости. А-отображения.
- •Алгебраические свойства а-отображений и их геометрическое истолкование.
- •Моделирование проективного пространства.
- •Приложение. Основные свойства пучков окружностей.
- •Ортогональность и пучки.
- •Статья 5.Исчисление симметрий. Краткое содержание статьи.
- •Сопряженные движения.
- •Композиция симметрий на плоскости.
- •Композиция симметрий относительно четырех прямых.
- •Композиция симметрий относительно трех прямых.
- •Определение абстрактной группы движений.
- •Композиция пяти инверсий.
- •Немного о симметриях в пространстве.
- •Биплетная симметрия, или симметрия относительно пары точек.
- •Статья 6.Наглядные теоремы и построения. (Возвращение к старым темам). Краткое содержание статьи.
- •Окружность, ортогональная трем данным.
- •Три окружности Лобачевского.
- •Римановы окружности и евклидовы окружности.
- •Новые свойства трех окружностей.
- •Трехмерное обобщение теоремы о трехокружнике Лобачевского.
- •Еще один способ построения окружности, ортогональной трем окружностям Лобачевского.
- •Теорема о трех неподвижных точках.
- •Биссектрисы или серединные окружности.
- •Снова задача Аполлония.
- •Статья 7.Моделирование геометрий Лобачевского, Евклида и Римана в геометрии окружности. Краткое содержание статьи.
- •Объемная модель различных геометрий.
- •Окружности в разных геометриях.
- •Плоская модель различных геометрий.
- •Связь плоской и пространственной моделей.
- •Плодотворность плоской модели.
- •Сумма углов треугольника или «углы в трехокружнике».
- •Изогональные окружности.
- •Ориентация и расположение углов.
- •Теорема о пересечении биссектрис трех окружностей и неевклидовы геометрии.
- •Статья 8.Завершение задачи Аполлония и другие задачи на построение. Краткое содержание статьи.
- •Возвращение к задаче Аполлония (с того места, как мы оставили ее в ст. 6)
- •Однотипные задачи на построение.
- •Построение изогональных окружностей к трем данным а, в, с и завершение задачи Аполлония.
- •Небольшое применение теории групп приводит к большому упрощению.
- •Алгоритм для задачи Аполлония.
- •Теорема о композиции инверсий одного пучка.
- •Геометрические выводы.
- •Статья 9.Шесть замечательных точек геометрии окружностей. Угол между окружностями. Краткое содержание статьи.
- •Теорема об отображении трех точек.
- •Шесть замечательных точек.
- •Подсчет углов в трехокружнике.
Статья 2.Теорема о шести окружностях или теорема о четырех пучках. Пучки окружностей, их определение, виды и свойства. Краткое содержание.
Сначала здесь рассматривается теорем о шести окружностях или теорема о четырех пучках. После вычислительного, "школьного" доказательства приводятся доказательства, использующие простые объемные построения. Становится ясным, что теорема обобщается и на многомерные пространства и в плоском варианте.
Затем решается задача о нахождении образа точки Х при какой-то инверсии I, если не известна окружность инверсии, но известны образы двух других точек при этой инверсии. Задача неожиданно приводит нас снова к теореме о шести окружностях. Затем определяются "пучки" окружностей (они появляются при обобщении теоремы о шести окружностях) и рассматриваются их свойства. В конце статьи рассматриваются симметрии относительно точек и прямых в контексте геометрии окружности и используются элементы теории групп (без явных определений и от читателя не требуются предварительные знания).
Формулировка теоремы.
Пусть есть три окружности А, В, С, все пересекаются между собой. Выберем произвольную точку Х на плоскости и проведем через нее окружности D1, D2, D3 так, чтобы каждая из этих окружностей проходила через одну из пар точек пересечения трех исходных окружностей. Пусть окружности D1 и D2 пересекаются в точках P и Q. Тогда – утверждает теорема – и окружность D3 проходит через Q.
Рисунок 1.
(Исходные пересекающиеся окружности А, В, С точка Р и окружности D1, D2, D3)
Исключение. Возможно, что D1 и D2 касаются друг друга в точке Р. Тогда теорема утверждает, что и D3 касается их в точке Р.
Стандартное или школьное доказательство.
Обыкновенно задачу про окружности стараются свести к задачам про прямые, лучше всего – перпендикулярные (а еще лучше – к векторам) и подсчитать какие-нибудь углы и расстояния. В данном случае доказательство использует одну важную идею: если условие задачи содержит только слова "точка" и "окружность" и требуется доказать, что какие-то точки лежат на одной окружности (или окружности пересекаются в одной точке) то можно провести инверсию относительно любой окружности и решать задачу уже про инвертированные точки и окружности. Ведь при инверсии – окружности перейдут в окружности, а точки пересечения – в точки пересечения инвертированных окружностей. Если выбрать центр инверсии в точке пересечения каких-то окружностей, то эти окружности перейдут в прямые. А теоремы о прямых "школьная" геометрия умеет доказывать.
Осуществим инверсию с центром в точке Р. Тогда окружности D1, D2, D3 перейдут в прямые, т.к. по условию проходят через Р, центр инверсии. Нарисуем результат инверсии.
Рисунок 2.
(Окружности А, В, С, и прямые D1, D2, D3 каждая из прямых проходит через пару точек пересечения окружностей А, В, С между собой)
Прямые D1, D2, D3 имеют общую бесконечно удаленную точку. Это – образ точки Р при инверсии. Требуется доказать, что все они пересекаются в одной точке Q. Пусть АВ1 и АВ2; ВС1 и ВС2; АС1 и АС2 – точки пересечения соответственных окружностей. Проведем две прямые D2 и D3 – они пересекутся в точке Q, достаточно доказать, что прямая, проходящая через Q и АС1 проходит и через АС2. Для этого воспользуемся свойством секущих к окружности.
Рисунок 3.
(Окружность О, точка Q вне ее, прямая, проходящая через Q и пересекающая О в точках Х и Х1 и прямая, также проходящая через Q и пересекающая О в точках Y и Y1)
Свойство связывает расстояния: |Q,X|*|Q,X1|=|Q,Y|*|Q,Y1| тогда и только тогда, когда X, X1, Y, Y1 лежат на одной окружности ("только когда" требует уточнения, о том, что Q – не разделяет пары точек пересечения Х, Х1; и Y, Y1. Причем если Q лежит внутри окружности, то напротив, необходимо чтобы Q разделяла точки пересечения, а формула останется неизменной).
Применим это свойство к рисунку 2.
|Q, AB1|*|Q,AB2|=|Q,BC1|*|Q,BC2| т.к. все эти точки лежат на окружности В. Пусть Х – вторая точка пересечения прямой (Q, АС1) с окружностью С, надо доказать, что она лежит на окружности А. Отсюда сразу следует, что она и есть АС2.
|Q,AC1|*|Q,X|=|Q, BС1|*|Q, BС2| т.к. AC1, BС1, BС2 и Х – на окружности С. Но, как было уже сказано |Q, AB1|*|Q,AB2|=|Q,BC1|*|Q,BC2|, значит
|Q, AB1|*|Q,AB2|=|Q,AC1|*|Q,X| АВ1, АВ2, АС1 – лежат на А, значит по свойству длин секущих – и Х лежит на А, по построению Х лежит и на С, значит Х – вторая точка пересечения А и С, что и требовалось. Заметим, что если бы окружность С разделяла точки пересечения А и В, то, после инверсии Q разделяла бы точки АС1 и АС2 и другие точки пересечения. Доказательство в этом случае было бы аналогично.
Это – хорошее доказательство, но оно проходит мимо разных случаев обобщения этой теоремы.