
- •1. Общие сведения о машинах и механизмах: классификация и назначение.
- •2. Основные характеристики и требования, предъявляемые к машинам и механизмам.
- •3. Критерии работоспособности элементов конструкций.
- •4. Стадии конструирования машин.
- •5. Машиностростроительные материалы: характеристика и свойства.
- •6. Понятие о взаимозаменяемости как принципе конструирования и производства деталей.
- •7. Точность геометрической формы деталей, виды отклонений формы и расположения поверхностей.
- •8. Метод сечений, внутренние силовые факторы.
- •9. Напряжения: общее понятие, виды, размерность. Допускаемые напряжения.
- •10. Связь между напряжениями и внутренними силовыми факторами.
- •11. Связь между напряжениями и деформациями, закон Гука, коэффициент Пуассона.
- •12. Внутренние силы, напряжения и деформации при растяжении и сжатии.
- •13. Диаграмма напряжений, характеристика прочности материалов.
- •14. Пластичные и хрупкие материалы, диаграммы их растяжения-сжатия.
- •15. Твердость материалов и способы ее определения.
- •17. Расчеты на прочность при растяжении и сжатии.
- •18. Центр тяжести и статические моменты площадей геометрических фигур.
- •19. Полярный и осевые моменты инерции геометрических фигур.
- •20. Прочностные расчеты на сдвиг (срез).
- •21. Прочностные расчеты на смятие.
- •22. Деформации при кручении.
- •23. Напряжения при кручении.
- •24. Определение угла закручивания при кручении.
- •26. Расчеты на прочность и жесткость при кручении.
- •27-28. Деформации и напряжения при чистом изгибе, правило знаков для изгибающих моментов. Расчеты на прочность при изгибе.
- •30. Виды опор и опорные реакции при построении эпюр сил и моментов.
- •31. Механические передачи: основные силовые и кинематические соотношения.
- •32. Ременные передачи: классификация и основные геометрические параметры.
- •33. Кинематика ременной передачи.
- •34. Характеристика сил в ременной передаче.
- •35. Ременные передачи: напряжения в ремне и их характеристики.
- •36. Зубчатые передачи: классификация, основные кинематические соотношения.
- •37. Зубчатые передачи: формирование эвольвентного профиля зубьев.
- •38. Геометрические элементы и характеристики зубчатого зацепления.
- •39. Кинематические и геометрические характеристики прямозубой зубчатой передачи.
- •40. Силы в зацеплении прямозубых зубчатых передач.
- •41. Расчет на выносливость по контактным напряжениям активных поверхностей зубьев зубчатых колес.
- •42. Расчет на выносливость по напряжениям изгиба активных fповерхностей зубьев зубчатых колес.
- •43. Червячные передачи: классификация, характеристики и назначение.
- •44. Основные геометрические соотношения червячных передач.
- •45. Кинематический расчет червячной передачи.
- •46. Силовой расчет червячной передачи.
- •47. Расчет на прочность по контактным напряжениям червячных передач.
- •48. Расчет на прочность по напряжениям изгиба червячных передач.
- •49. Фрикционные передачи: основные силовые и кинематические соотношения.
- •59. Валы: характеристика, разновидности, назначение. Порядок проектирования.
- •60. Подшипники скольжения: классификация, характеристика и назначение.
- •61. Подшипники качения: классификация, характеристика и назначение.
- •62. Критерии работоспособности подшипников качения.
- •63. Муфты: классификация, характеристика и назначение.
59. Валы: характеристика, разновидности, назначение. Порядок проектирования.
Вал – деталь машины, передающая крутящий момент и поддерживающая вращающиеся детали. Вращающиеся детали и поддерживающие их валы обычно жестко соединены посадками с натягом, шпонками, шлицами, поэтому валы могут быть только вращающимися, при этом они всегда передают вращающий момент и подвержены кручению.
По назначению валы можно разделить на коренные, т.е. валы несущие основные рабочие органы машины (ротор турбины, коленчатый вал ДВС, шпиндель станка), и передаточные (валы передач), используемые для передачи и распределения движения и несущие на себе детали передач: зубчатые колеса, шкивы, звездочки. В ряде машин применяют валы для передачи вращающего момента к исполнительным органам; их называют трансмиссионными. Иногда используют торсионные валы (торсионы), т.е. валы обычно малых диаметров и передающих только вращающие моменты.
Валы по форме геометрической оси разделяют на прямые и коленчатые. Коленчатые валы применяют для преобразования возвратно-поступательного движения (поршней) во вращательное (коленчатого вала) или наоборот.
Конструирование и расчеты на прочность валов неразрывно взаимосвязаны. При разработке конструкции валов применяют метод последовательных приближений. Первым шагом является определение по простейшим эмпирическим зависимостям и рекомендациям предварительных, ориентировочных значений диаметров и разработка первого варианта конструкции (эскизный проект). На втором этапе составляют расчетную схему (расчетную модель) и проводят расчет на статическую прочность и первую коррекцию конструкции вала. Далее проводят проверочный расчет на усталостную прочность и уточняют конструкцию вала. На последнем этапе проводят, по мере необходимости, специальные расчеты (на жесткость, вибростойкость) и разрабатывают окончательный вариант конструкции вала или оси, отвечающий всем критериям работоспособности данного вала с учетом требований технологичности, экономичности.
60. Подшипники скольжения: классификация, характеристика и назначение.
Подшипник скольжения – опора или направляющая, в которой цапфа (опорная поверхность вала) скользит по поверхности вкладыша (подшипника). Для уменьшения сил трения и износа подшипники смазывают. Основное применение имеют жидкие смазочные материалы, особенно при больших нагрузках и скоростях. Газообразные смазочные материалы (главным образом воздух) применяют для высокоскоростных опор. Для тихоходных опор используют пластичные смазочные материалы. Для подшипников, работающих в экстремальных условиях, применяют самосмазывающиеся материалы, т.е. материалы, которые содержат компоненты или покрытия, обеспечивающие смазывание.
По направлению воспринимаемой нагрузки подшипники скольжения подразделяют на две группы: радиальные и упорные (осевые). При совместном действии радиальных и осевых нагрузок применяют совмещенные опоры, в которых осевую нагрузку воспринимают торцы вкладышей или специальные гребни.
По принципу образования подъемной силы в масляном слое подшипники делят на гидродинамические и гидростатические. Для разделения трущихся поверхностей слоем смазочного материала в нем необходимо создать избыточное давление. В гидродинамических подшипниках это давление возникает только при относительном движении поверхностей вследствие затягивания масла в клиновой зазор. В гидростатических подшипниках давление создается насосом. Основное распространение получили подшипники с гидродинамической смазкой как наиболее простые.
Подшипники скольжения применяют преимущественно в тех областях, в которых нецелесообразно или невозможно использовать подшипники качения:
- при ударных и вибрационных нагрузках.
- при особо высоких частотах вращения.
- для точных опор с постоянной жесткостью.
- для опор с малыми радиальными размерами.
- для разъемных опор.
- при работе в экстремальных условиях (высокие температуры, абразивные и агрессивные среды).
- для неответственных и редко работающих механизмов.
Подшипники скольжения легче и проще в изготовлении, чем подшипники качения, бесшумны, обладают постоянной жесткостью и способностью работать практически без износа в режиме жидкостной и газовой смазки. К недостаткам подшипников скольжения можно отнести сложность системы смазки для обеспечения жидкостного трения, необходимость применения цветных металлов, повышенные пусковые моменты и увеличенные размеры в осевом направлении.
Подшипник скольжения содержит корпус, вкладыш, смазывающие и защитные устройства. Корпус подшипника цельный или разъемный изготовляют как отдельную деталь либо деталь, присоединяемую к машине. Вкладыши используют для того, чтобы не выполнять весь корпус из дорогих антифрикционных материалов. После износа вкладыши заменяют.