
- •Разработка моделей, алгоритмов и программных средств для повышения качества прогнозов биржевых показателей
- •Анализ существующих средств прогнозирования экономических показателей бирж
- •Модели и алгоритмы оценки стоимости ценных бумаг и управления инвестиционными активами
- •Роль рынка ценных бумаг в финансовой системе страны
- •Фундаментальный анализ
- •Показатели, используемые для фундаментального анализа акций
- •Технический анализ
- •Теории функционирования рынка ценных бумаг
- •Теория эффективного рынка
- •Теория случайных блужданий
- •Теория хаоса
- •Теория адаптивного рынка
- •Методы и модели для прогнозирования экономических показателей
- •Математическо-статистические методы
- •Поведенческие модели
- •Мультиагентные системы
- •Разработки, использующие мультиагентный подход для прогнозирования экономических показателей
- •Модель «SantaFe» и её вариации
- •Модель «Genoa Artificial Stock Market»
- •Библиотека «MoTor» и система «Имитрейд»
- •Платформа «ArTificial Open Market»
- •Комплекс «Altreva adaptive modeler»
- •Требования к функциональности проектируемого программного комплекса
- •Разработка архитектуры виртуального рынка ценных бумаг и системы поддержки принятия решений
- •Математическая модель виртуального рынка
- •Виртуальный мир и виртуальные агенты
- •Классификаторы
- •Новостная среда
- •Роли и стратегии
- •Активы агентов
- •Компании
- •Трейдеры
- •Стратегии трейдеров
- •Ордера и транзакции
- •Система обработки ордеров
- •Движение денежных средств при совершении транзакций
- •Расчёт статистических характеристик рынка ценных бумаг
- •Математическая формулировка задачи исследования
- •Архитектура программного комплекса
- •Выбор платформы для мультиагентной системы
- •Взаимосвязь приложения, пакетов и компонентов
- •Виртуальный мир
- •Стандартные классы системы
- •Планы и стратегии
- •Запросы и транзакции
- •Механизм формирования цен
- •Архитектура системы поддержки принятия решений
- •Общая схема архитектуры
- •Подключаемые модули
- •Алгоритм работы
- •Анализ работы системы
- •Описание работы программного комплекса
- •Функциональность
- •Редакторы
- •Организация экспериментов
- •Оценка степени соответствия виртуального рынка реальному
- •Соблюдение пропорций
- •Активность трейдеров на бирже ммвб в 2007-2010 годах
- •Наличие трендов и фигур
- •Сходство статистических характеристик изменения цен и объёма торгов
- •2. Критерий Колмогорова
- •3. Критерий Романовского
- •4. Критерий Ястремского
- •Критерии согласия двух теоретических распределений с распределением приращения максимальной цены за день для акции компании «Юкос» за период с 25.05.2005 по 19.09.2006
- •Критерии согласия двух теоретических распределений с распределением данных реального рынка по результатам 20 независимых экспериментов
- •Критерий согласия распределения Коши и объёма торгов за первые 116 дней торгов на виртуальном рынке в сценарии «FundamentalTradersExperiment.Fmp»
- •Критерий согласия распределения Коши и максимальной дневной цены по первой акции на виртуальном рынке в сценарии «FundamentalTradersExperiment.Fmp» за 165 дней торгов
- •Критерии согласия распределения Коши с распределением данных на виртуальном рынке по результатам 20 независимых экспериментов
- •Фрактальность рыночных процессов
- •Расчёт показателя Хёрста для различных временных рядов
- •Реакция рынка на действия отдельных агентов
- •Эксперименты, проведенные над виртуальным рынком
- •Зависимость размера спрэда от склонности к риску трейдеров
- •Влияние фундаментальных трейдеров на динамику котировок акций
- •Влияние новостного фона на котировки ценных бумаг при различном составе участников рынка
- •Практическое применение программного комплекса в качестве системы поддержки принятия решений
- •Математические критерии оценки качества прогнозов
- •Анализ работы системы поддержки принятия решений
- •Результаты сравнения краткосрочных прогнозов экспертов и системы поддержки принятия решений «fimas»
- •Результаты сравнения среднесрочных прогнозов экспертов и системы поддержки принятия решений «fimas»
- •Технико-экономическое обоснование
- •Преимущества и недостатки программного комплекса, выявленные в процессе эксплуатации
- •Другие перспективы практического применения
- •Перспективы для дальнейших исследований и разработок
- •Заключение
- •Литература
- •Приложения
- •Акт о внедрении результатов диссертационного исследования в ооо «Таулинк»
- •Акт о внедрении результатов диссертационного исследования в тк «Фотон»
- •Краткая информация о проекте «fimas»
- •Подробная схема связи компонентов и пакетов в системе
- •Алгоритм работы ролей трейдера и брокера
- •Алгоритм обработки текущих ордеров фундаментальным трейдером
- •Критерии согласия двух теоретических распределений (Гауса, Коши) с распределением приращения максимальной цены за день для акции компании «Юкос» за период с 25.05.2005 по 19.09.2006
- •Сравнение распределений Коши с распределением объёма торгов по первой акции на виртуальном рынке в сценарии «FundamentalTradersExperiment.Fmp» за 116 дней торгов
- •Критерии согласия распределения Коши с распределением объёма торгов по первой акции на виртуальном рынке в сценарии «FundamentalTradersExperiment.Fmp» за 116 дней торгов
- •Сравнение распределений Коши с распределением максимальной дневной цены по первой акции на виртуальном рынке в сценарии «FundamentalTradersExperiment.Fmp» за 165 дней торгов
- •Критерии согласия распределения Коши с распределением максимальной дневной цены по первой акции на виртуальном рынке в сценарии «FundamentalTradersExperiment.Fmp» за 165 дней торгов
- •Статистические данные по биржам
- •Структура трейдеров в модели fimas и на реальных биржах
- •Новости и спрэд акций в сценарии «NewsGenerator.Fmp» при преобладании новостных трейдеров
Модель «Genoa Artificial Stock Market»
В 2000 году Michele Marchesi и Marco Raberto разработали принципиально новый тип модели рынка ценных бумаг, которую они назвали GASM (Genoa Artificial Stock Market) [78]. В отличие от модели Sante Fe, в GASM запросы и транзакции являются автономными объектами, как в реальной жизни. Однако, в общем система продолжает быть очень примитивной: в ней только 18 классов, описывающих виртуальный мир. Также была упрощена модель принятия решений: теперь у всех трейдеров одинаковая стратегия, согласно которой они размещают запросы на покупку и продажу акций в произвольное время.
Рис. 1.7. График изменения цены акции в модели GASM
В модели GASM, как и в Santa Fe, время течёт дискретно, с шагом один день. Нет такого понятия, как время действия ордера: маркет-мейкер находит совпадения между имеющимися ордерами, и просто отбрасывает те, для которых не найдены совпадения. Маркет-мейкер «идеализирован»: он обладает неограниченными запасами денежных средств и акций, чтобы покрывать запросы трейдеров согласных с его ценой.
В результате, в данной модели график изменения дневных доходов выглядит достаточно реалистично (Рис. 1.7), но его распределение – но его распределение почти повторяетнормальное распределение (Рис. 1.8), что говорит о неадекватности данной модели. Также в рамках данной модели был проведён эксперимент с использованием двух типов трейдеров одновременно: оптимистов и пессимистов. Распределение стало больше похоже на распределение Коши, но у него не было толстых хвостов и характерного пика.
Рис. 1.8. Распределение дневных доходов трейдеров в модели GASM
Инновационность данной модели заключается в том, что толстые хвосты на графике распределения доходов трейдеров удалось получить даже при отсутствии симуляции интеллекта у агентов, как следствие применения лимитных запросов без каких либо предположений о поведении агентов. В предыдущих экспериментах Michele Marchesi и Marco Rabertoискусственный рынок с механизмом периодической обработки ордеров не показывал толстые хвосты на графике распределения доходов, если предварительно не было сделано предположений о высоких колебаниях на графике распределения активов трейдеров. Это открытие говорит о том, что архитектура рынка влияет ключевую роль в образовании толстых хвостов на графике распределения доходов.
Также авторы показали, что если заставить агентов предположить, что время ожидания между посылкой ордеров распределено по экспоненциальному закону, то оно в итоге таким и окажется. Более того, эмпирический анализ, проведённый Марко Роберто над акциями компании General Electric на Нью-йоркской бирже, показал, что время подачи запросов действительно распределено по экспоненциальному закону.
Это является одной из закономерностей мультиагентных моделей: если подавляющее чисто агентов считает, что некий параметр должен иметь какое-то конкретное значение, то он чаще всего таким и становится. Другие трейдеры (которые находятся в меньшинстве) могут либо серьёзно заработать на этой предсказуемости, либо обанкротится, если не смогут вовремя адаптироваться.
Программная реализация модели
Michele Marchesi реализовал модель GASM на языке Smalltalk, но так и не опубликовал её исходный код. В связи с этим не было возможным провести опыты над этой моделью и каким-либо образом верифицировать результаты его исследований.