
- •Оглавление
- •Введение
- •1. Назначение и функции операционной системы
- •1. 1. Функциональные компоненты операционной системы автономного компьютера
- •1. 1. 1. Управление процессами
- •1. 1. 2. Управление памятью
- •1. 1. 3. Управление файлами и внешними устройствами
- •1. 1. 4. Защита данных и администрирование
- •1. 1. 5. Интерфейс прикладного программирования
- •1. 1. 6. Пользовательский интерфейс
- •Вопросы для самопроверки
- •Контрольные вопросы
- •1. 2. Сетевые операционные системы
- •1. 2. 1. Сетевые и распределенные ос
- •1. 2. 2. Два значения термина «сетевая ос»
- •1. 2. 3. Функциональные компоненты сетевой ос
- •1. 2. 4. Сетевые службы и сетевые сервисы
- •1. 2. 5. Встроенные сетевые службы и сетевые оболочки
- •1.3 Одноранговые и серверные сетевые операционные системы
- •1.3.1 Ос в одноранговых сетях
- •1.3.2 Ос в сетях с выделенными серверами
- •1. 4. Требования к современным операционным системам
- •Вопросы для самопроверки
- •Контрольные вопросы
- •2. Архитектура операционной системы
- •2. 1. Ядро и вспомогательные модули ос
- •2. 2. Ядро и привилегированный режим
- •2. 3. Многослойная структура ос
- •2. 4. Аппаратная зависимость и переносимость ос
- •2. 5. Переносимость операционной системы
- •Вопросы для самопроверки
- •Контрольные вопросы
- •2. 6. Микроядерная архитектура
- •2 .6. 1. Концепция
- •2. 6. 2. Преимущества и недостатки микроядерной архитектуры
- •2. 7. Совместимость и множественные прикладные среды
- •2. 7. 1. Двоичная совместимость и совместимость исходных текстов
- •2. 7. 2. Трансляция библиотек
- •2. 7. 3. Способы реализации прикладных программных сред
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. Процессы и потоки
- •3. 1. Мультипрограммирование
- •3. 1. 1. Мультипрограммирование в системах пакетной обработки
- •3. 1. 2. Мультипрограммирование в системах разделения времени
- •3. 1. 3. Мультипрограммирование в системах реального времени
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. 2. Мультипроцессорная обработка
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. 3. Планирование процессов и потоков
- •3. 4. Понятия «процесс» и «поток»
- •3 .4. 1. Создание процессов и потоков
- •3. 4. 2. Планирование и диспетчеризация потоков
- •3. 4. 3. Состояния потока
- •3. 4. 4. Вытесняющие и невытесняющие алгоритмы планирования
- •3. 4. 5. Алгоритмы планирования, основанные на квантовании
- •3. 4. 6. Алгоритмы планирования, основанные на приоритетах
- •3. 4. 7. Смешанные алгоритмы планирования
- •3.5 Мультипрограммирование на основе прерываний
- •3.5.1 Назначение и типы прерываний
- •3.5.2 Механизм прерываний
- •3.5.3 Программные прерывания
- •3.5.4 Диспетчеризация и приоритезация прерываний в ос
- •3.5.5 Функции централизованного диспетчера прерываний на примере Windows nt
- •3.5.6 Процедуры обработки прерываний и текущий процесс
- •3.5.7 Системные вызовы
- •3. 6. Синхронизация процессов и потоков
- •3. 5. 1. Цели и средства синхронизации
- •3.6.2 Необходимость синхронизации и гонки
- •3.6.3 Критическая секция
- •3.6.4 Блокирующие переменные
- •3.6.5 Семафоры
- •3.6.6 Тупики
- •3.6.7 Синхронизирующие объекты ос
- •3.6.8 Сигналы
- •Вопросы для самопроверки
- •Контрольные вопросы
- •4. Управление памятью
- •4. 1. Функции ос по управлению памятью
- •4. 2. Типы адресов
- •Вопросы для самопроверки
- •Контрольные вопросы
- •4. 3. Алгоритмы распределения памяти
- •4. 3. 1. Алгоритмы распределения без использования внешней памяти Распределение памяти динамическими разделами
- •Перемещаемые разделы
- •4. 3. 2. Алгоритмы распределения с использованием внешней памяти
- •Свопинг и виртуальная память
- •Страничное распределение
- •Сегментное распределение
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
- •4.4 Кэширование данных
- •4. 4. 1 Иерархия запоминающих устройств
- •4.4.3 Проблема согласования данных
- •4.4.4 Способы отображения основной памяти на кэш
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. Ввод-вывод и файловая система
- •5. 1. Задачи ос по управлению файлами и устройствами
- •5. 2. Специальные файлы
- •5. 3. Логическая организация файловой системы
- •5. 3. 1. Цели и задачи файловой системы
- •5. 3. 2. Типы файлов
- •5. 3. 3. Иерархическая структура файловой системы
- •5. 3. 4. Имена файлов
- •5. 3. 5. Монтирование
- •5. 3. 6. Атрибуты файлов
- •5. 3. 7. Логическая организация файла
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 4. Физическая организация файловой системы
- •5. 4. 1. Диски, разделы, секторы, кластеры
- •5. 4. 2. Физическая организация и адресация файла
- •2048 Записей
- •5. 5. Физическая организация fat
- •5. 6. Физическая организация s5 и ufs
- •5. 7. Физическая организация ntfs
- •5. 7. 1. Структура тома ntfs
- •5. 7. 2. Структура файлов ntfs
- •5. 7. 3. Каталоги ntfs
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 8. Контроль доступа к файлам
- •5. 8. 1. Доступ к файлам как частный случай доступа к разделяемым ресурсам
- •5. 8. 2. Механизм контроля доступа
- •5. 8. 3. Организация контроля доступа в ос unix
- •Процесс
- •Запрос операции
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 8. 4. Организация контроля доступа в ос Windows nt
- •Разрешения на доступ к каталогам и файлам
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5.9 Отказоустойчивость файловых систем
- •5.9.1 Восстанавливаемость файловых систем Причины нарушения целостности файловых систем
- •5.9.2 Протоколирование транзакций
- •5.9.3 Восстанавливаемость файловой системы ntfs
- •5.9.4 Избыточные дисковые подсистемы raid
- •Библиографический список
- •Ответы на вопросы для самопроверки
Вопросы для самопроверки
На какие области разбивает файловая система FAT логический раздел диска?
Укажите основную информационную составляющую файловой системы NTFS.
Что является основной компонентой файла в NTFS?
Для каких целей в NTFS используется информация об узлах B-дерева?
Контрольные вопросы
Какому параметру соответствует количество индексных указателей в таблице FAT?
Какое максимальное количество кластеров может поддерживать файловая система FAT16?
Возможна ли ситуация, при которой можно надежно восстановить файл?
Как в терминах ОС UNIX принято называть информационную структуру, в которой хранятся характеристики файла?
Чем является индексный дескриптор с точки зрения идентификации файла?
Может ли файл в ОС UNIX иметь более одного символьного имени?
Какая базовая единица дискового пространства используется для хранения информации в NTFS?
Какое количество стандартных записей содержит первый отрезок MFT?
Какие поля содержатся в атрибуте файла?
На какие типы делят файлы в NTFS в зависимости от способа их размещения?
Какая информация содержится в поле Data больших файлов?
Какую информацию содержит атрибут Index Root?
Какие атрибуты связаны с конкретным файлом в каталожной записи?
5. 8. Контроль доступа к файлам
5. 8. 1. Доступ к файлам как частный случай доступа к разделяемым ресурсам
Файлы – это частный, хотя и самый популярный, вид разделяемых ресурсов, доступ к которым операционная система должна контролировать. Существуют и другие виды ресурсов, с которыми пользователи работают в режиме совместного использования. Прежде всего, это различные внешние устройства: принтеры, модемы, графопостроители и т. п. Область памяти, используемая для обмена данными между процессами, также является примером разделяемого ресурса. Да и сами процессы в некоторых случаях выступают в этой роли, например, когда пользователи ОС посылают процессам сигналы, на которые процесс должен реагировать.
Во всех этих случаях действует общая схема: пользователи пытаются выполнить с разделяемым ресурсом определенные операции, а ОС должна решать, имеют ли пользователи на это право. Пользователи являются субъектами доступа, а разделяемые ресурсы – объектами. Пользователь осуществляет доступ к объектам операционной системы не непосредственно, а с помощью прикладных процессов, которые запускаются от его имени. Для каждого типа объектов существует набор операций, которые с ними можно выполнять. Например, для файлов это операции чтения, записи, удаления, выполнения; для принтера – перезапуск, очистка очереди документов, приостановка печати документа и т. д. Система контроля доступа ОС должна предоставлять средства для задания прав пользователей по отношению к объектам дифференцированно по операциям, например, пользователю может быть разрешена операция чтения и выполнения файла, а операция удаления – запрещена.
Во многих операционных системах реализованы механизмы, которые позволяют управлять доступом к объектам различного типа с единых позиций. Так, представление устройств ввода-вывода в виде специальных файлов в операционных системах UNIX является примером такого подхода: в этом случае при доступе к устройствам используются те же атрибуты безопасности и алгоритмы, что и при доступе к обычным файлам и каталогам. Еще дальше продвинулась в этом направлении операционная система Windows NT. В ней используется унифицированная структура – объект безопасности. Она создается не только для файлов и внешних устройств, но и для любых разделяемых ресурсов, например, секций памяти. Это позволяет использовать в Windows NT для контроля доступа к ресурсам любого вида общий модуль ядра – менеджер безопасности.
В качестве субъектов доступа могут выступать как отдельные пользователи, так и группы пользователей. Определение индивидуальных прав доступа для каждого пользователя позволяет максимально гибко задать политику расходования разделяемых ресурсов в вычислительной системе. Однако этот способ приводит в больших системах к чрезмерной загрузке администратора рутинной работой по повторению одних и тех же операций для пользователей с одинаковыми правами. Объединение таких пользователей в группу и задание прав доступа в целом для группы является одним из основных приемов администрирования в больших системах.
У каждого объекта доступа существует владелец. Владельцем может быть как отдельный пользователь, так и группа пользователей. Владелец объекта имеет право выполнять с ним любые допустимые для данного объекта операции. Во многих операционных системах существует особый пользователь (superuser, root, administrator), который имеет все права по отношению к любым объектам системы, не обязательно являясь их владельцем. Под таким именем работает администратор системы, которому необходим полный доступ ко всем файлам и устройствам для управления политикой доступа.
Различают два основных подхода к определению прав доступа.
Избирательный доступ имеет место, когда для каждого объекта сам владелец может определить допустимые операции с объектами. Этот подход называется также произвольным (от discretionary – предоставленный на собственное усмотрение) доступом, так как позволяет администратору и владельцам объектов определить права доступа произвольным образом, по их желанию. Между пользователями и группами пользователей в системах с избирательным доступом нет жестких иерархических взаимоотношений, то есть взаимоотношений, которые определены по умолчанию и которые нельзя изменить. Исключение делается только для администратора, по умолчанию наделяемого всеми правами.
Мандатный доступ (от mandatory – обязательный, принудительный) – это такой подход к определению прав доступа, при котором система наделяет пользователя определенными правами по отношению к каждому разделяемому ресурсу (в данном случае файлу) в зависимости от того, к какой группе пользователь отнесен. От имени системы выступает администратор, а владельцы объектов лишены возможности управлять доступом к ним по своему усмотрению. Все группы пользователей в такой системе образуют строгую иерархию, причем каждая группа пользуется всеми правами группы более низкого уровня иерархии, к которым добавляются права данного уровня. Членам какой-либо группы не разрешается предоставлять свои права членам групп более низких уровней иерархии.
Мандатный способ доступа близок к схемам, применяемым для доступа к секретным документам: пользователь может входить в одну из групп, отличающихся правом на доступ к документам с соответствующим грифом секретности, например, «для служебного пользования», «секретно», «совершенно секретно» и «государственная тайна». При этом пользователи группы «совершенно секретно» имеют право работать с документами «секретно» и «для служебного пользования», так как эти виды доступа разрешены для более низких в иерархии групп. Однако сами пользователи не распоряжаются правами доступа – этой возможностью наделен только особый чиновник учреждения.
Мандатные системы доступа считаются более надежными, но менее гибкими, обычно они применяются в специализированных вычислительных системах с повышенными требованиями к защите информации. В универсальных системах используются, как правило, избирательные методы доступа, о которых и будет идти речь ниже.
Для определенности будем далее рассматривать механизмы контроля доступа к таким объектам, как файлы и каталоги, но необходимо понимать, что эти же механизмы могут использоваться в современных операционных системах для контроля доступа к объектам любого типа и отличия заключаются лишь в наборе операций, характерных для того или иного класса объектов.