
- •Оглавление
- •Введение
- •1. Назначение и функции операционной системы
- •1. 1. Функциональные компоненты операционной системы автономного компьютера
- •1. 1. 1. Управление процессами
- •1. 1. 2. Управление памятью
- •1. 1. 3. Управление файлами и внешними устройствами
- •1. 1. 4. Защита данных и администрирование
- •1. 1. 5. Интерфейс прикладного программирования
- •1. 1. 6. Пользовательский интерфейс
- •Вопросы для самопроверки
- •Контрольные вопросы
- •1. 2. Сетевые операционные системы
- •1. 2. 1. Сетевые и распределенные ос
- •1. 2. 2. Два значения термина «сетевая ос»
- •1. 2. 3. Функциональные компоненты сетевой ос
- •1. 2. 4. Сетевые службы и сетевые сервисы
- •1. 2. 5. Встроенные сетевые службы и сетевые оболочки
- •1.3 Одноранговые и серверные сетевые операционные системы
- •1.3.1 Ос в одноранговых сетях
- •1.3.2 Ос в сетях с выделенными серверами
- •1. 4. Требования к современным операционным системам
- •Вопросы для самопроверки
- •Контрольные вопросы
- •2. Архитектура операционной системы
- •2. 1. Ядро и вспомогательные модули ос
- •2. 2. Ядро и привилегированный режим
- •2. 3. Многослойная структура ос
- •2. 4. Аппаратная зависимость и переносимость ос
- •2. 5. Переносимость операционной системы
- •Вопросы для самопроверки
- •Контрольные вопросы
- •2. 6. Микроядерная архитектура
- •2 .6. 1. Концепция
- •2. 6. 2. Преимущества и недостатки микроядерной архитектуры
- •2. 7. Совместимость и множественные прикладные среды
- •2. 7. 1. Двоичная совместимость и совместимость исходных текстов
- •2. 7. 2. Трансляция библиотек
- •2. 7. 3. Способы реализации прикладных программных сред
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. Процессы и потоки
- •3. 1. Мультипрограммирование
- •3. 1. 1. Мультипрограммирование в системах пакетной обработки
- •3. 1. 2. Мультипрограммирование в системах разделения времени
- •3. 1. 3. Мультипрограммирование в системах реального времени
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. 2. Мультипроцессорная обработка
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. 3. Планирование процессов и потоков
- •3. 4. Понятия «процесс» и «поток»
- •3 .4. 1. Создание процессов и потоков
- •3. 4. 2. Планирование и диспетчеризация потоков
- •3. 4. 3. Состояния потока
- •3. 4. 4. Вытесняющие и невытесняющие алгоритмы планирования
- •3. 4. 5. Алгоритмы планирования, основанные на квантовании
- •3. 4. 6. Алгоритмы планирования, основанные на приоритетах
- •3. 4. 7. Смешанные алгоритмы планирования
- •3.5 Мультипрограммирование на основе прерываний
- •3.5.1 Назначение и типы прерываний
- •3.5.2 Механизм прерываний
- •3.5.3 Программные прерывания
- •3.5.4 Диспетчеризация и приоритезация прерываний в ос
- •3.5.5 Функции централизованного диспетчера прерываний на примере Windows nt
- •3.5.6 Процедуры обработки прерываний и текущий процесс
- •3.5.7 Системные вызовы
- •3. 6. Синхронизация процессов и потоков
- •3. 5. 1. Цели и средства синхронизации
- •3.6.2 Необходимость синхронизации и гонки
- •3.6.3 Критическая секция
- •3.6.4 Блокирующие переменные
- •3.6.5 Семафоры
- •3.6.6 Тупики
- •3.6.7 Синхронизирующие объекты ос
- •3.6.8 Сигналы
- •Вопросы для самопроверки
- •Контрольные вопросы
- •4. Управление памятью
- •4. 1. Функции ос по управлению памятью
- •4. 2. Типы адресов
- •Вопросы для самопроверки
- •Контрольные вопросы
- •4. 3. Алгоритмы распределения памяти
- •4. 3. 1. Алгоритмы распределения без использования внешней памяти Распределение памяти динамическими разделами
- •Перемещаемые разделы
- •4. 3. 2. Алгоритмы распределения с использованием внешней памяти
- •Свопинг и виртуальная память
- •Страничное распределение
- •Сегментное распределение
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
- •4.4 Кэширование данных
- •4. 4. 1 Иерархия запоминающих устройств
- •4.4.3 Проблема согласования данных
- •4.4.4 Способы отображения основной памяти на кэш
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. Ввод-вывод и файловая система
- •5. 1. Задачи ос по управлению файлами и устройствами
- •5. 2. Специальные файлы
- •5. 3. Логическая организация файловой системы
- •5. 3. 1. Цели и задачи файловой системы
- •5. 3. 2. Типы файлов
- •5. 3. 3. Иерархическая структура файловой системы
- •5. 3. 4. Имена файлов
- •5. 3. 5. Монтирование
- •5. 3. 6. Атрибуты файлов
- •5. 3. 7. Логическая организация файла
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 4. Физическая организация файловой системы
- •5. 4. 1. Диски, разделы, секторы, кластеры
- •5. 4. 2. Физическая организация и адресация файла
- •2048 Записей
- •5. 5. Физическая организация fat
- •5. 6. Физическая организация s5 и ufs
- •5. 7. Физическая организация ntfs
- •5. 7. 1. Структура тома ntfs
- •5. 7. 2. Структура файлов ntfs
- •5. 7. 3. Каталоги ntfs
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 8. Контроль доступа к файлам
- •5. 8. 1. Доступ к файлам как частный случай доступа к разделяемым ресурсам
- •5. 8. 2. Механизм контроля доступа
- •5. 8. 3. Организация контроля доступа в ос unix
- •Процесс
- •Запрос операции
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 8. 4. Организация контроля доступа в ос Windows nt
- •Разрешения на доступ к каталогам и файлам
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5.9 Отказоустойчивость файловых систем
- •5.9.1 Восстанавливаемость файловых систем Причины нарушения целостности файловых систем
- •5.9.2 Протоколирование транзакций
- •5.9.3 Восстанавливаемость файловой системы ntfs
- •5.9.4 Избыточные дисковые подсистемы raid
- •Библиографический список
- •Ответы на вопросы для самопроверки
5. 4. 1. Диски, разделы, секторы, кластеры
Основным типом устройства, которое используется в современных вычислительных системах для хранения файлов, являются дисковые накопители. Эти устройства предназначены для считывания и записи данных на жесткие и гибкие магнитные диски.
Жесткий диск состоит из одной или нескольких стеклянных или металлических пластин, каждая из которых покрыта с одной или двух сторон магнитным материалом. Таким образом, диск в общем случае состоит из пакета пластин.
На каждой стороне каждой пластины размечены тонкие концентрические кольца дорожки (traks), на которых хранятся данные. Количество дорожек зависит от типа диска. Нумерация дорожек начинается с 0 от внешнего края к центру диска. Когда диск вращается, элемент, называемый головкой, считывает двоичные данные с магнитной дорожки или записывает их на магнитную дорожку.
Головка может позиционироваться над заданной дорожкой. Головки перемещаются над поверхностью диска дискретными шагами, каждый шаг соответствует сдвигу на одну дорожку. Запись на диск осуществляется благодаря способности головки изменять магнитные свойства дорожки. Обычно все головки закреплены на едином перемещающем механизме и двигаются синхронно. Поэтому, когда головка фиксируется на заданной дорожке одной поверхности, все остальные головки останавливаются над дорожками с такими же номерами. Совокупность дорожек одного радиуса на всех поверхностях всех пластин пакета называется цилиндром (cylinder). Каждая дорожка разбивается на фрагменты, называемые секторами (sectors) или блоками (blocks), так что все дорожки имеют равное число секторов, в которые можно максимально записать одно и то же число байт. Сектор имеет фиксированный для конкретной системы размер, выражающийся степенью двойки. Чаще всего размер сектора составляет 512 байт. Поскольку дорожки разного радиуса имеют одинаковое число секторов, плотность записи становится тем выше, чем ближе дорожка к центру.
Сектор наименьшая адресуемая единица обмена данными дискового устройства с оперативной памятью. Для того чтобы контроллер мог найти на диске нужный сектор, необходимо задать ему все составляющие адреса сектора: номер цилиндра, номер поверхности и номер сектора. Так как прикладной программе в общем случае нужен не сектор, а некоторое количество байт, не обязательно кратное размеру сектора, то типичный запрос включает чтение нескольких секторов, содержащих требуемую информацию, и одного или двух секторов, содержащих наряду с требуемыми избыточные данные.
Операционная система при работе с диском использует, как правило, собственную единицу дискового пространства, называемую кластером (cluster). При создании файла место на диске ему выделяется кластерами. Например, если файл имеет размер 2560 байт, а размер кластера в файловой системе определен в 1024 байта, то файлу будет выделено на диске 3 кластера. Иногда кластер называют блоком (например, в ОС Unix), что может привести к терминологической путанице. Вообще, терминология, используемая при описании форматов дисков и файловых систем, зависит от аппаратной платформы операционной системы.
Дорожки и секторы создаются в результате выполнения процедуры физического (низкоуровневого) форматирования диска, предшествующей использованию диска. Для определения границ блоков на диск записывается идентификационная информация. Низкоуровневый формат диска не зависит от типа операционной системы, которая этот диск будет исполь-зовать.
Разметку диска под конкретный тип файловой системы выполняют процедуры высокоуровневого (логического) форматирования. При высокоуровневом форматировании определяется размер кластера и на диск записывается информация, необходимая для работы файловой системы, в том числе информация о доступном и неиспользуемом пространстве, о границах областей, отведенных под файлы и каталоги, информация о поврежденных областях. Кроме того, на диск записывается загрузчик операционной системы небольшая программа, которая начинает процесс инициализации операционной системы после включения питания или рестарта компьютера.
Прежде чем форматировать диск под определенную файловую систему, он может быть разбит на разделы. Раздел это непрерывная часть физического диска, которую операционная система представляет пользователю как логическое устройство (используются также названия логический диск и логический раздел). Логическое устройство функционирует так, как если бы это был отдельный физический диск. Именно с логическими устройствами работает пользователь, обращаясь к ним по символьным именам, используя, например, обозначения А, В, С, SYS и т. п. Операционные системы разного типа используют единое для всех них представление о разделах, но создают на его основе логические устройства, специфические для каждого типа ОС. Так же, как файловая система, с которой работает одна ОС, в общем случае не может интерпретироваться ОС другого типа, логические устройства не могут быть использованы операционными системами разного типа. На каждом логическом устройстве может создаваться только одна файловая система.
В частном случае, когда все дисковое пространство охватывается одним разделом, логическое устройство представляет физическое устройство в целом. Если диск разбит на несколько разделов, то для каждого из этих разделов может быть создано отдельное логическое устройство. Логическое устройство может быть создано и на базе нескольких разделов, причем эти разделы не обязательно должны принадлежать одному физическому устройству. Объединение нескольких разделов в единое логическое устройство может выполняться разными способами и преследовать разные цели, основные из которых: увеличение общего объема логического раздела, повышение производительности и отказоустойчивости. Примерами организации совместной работы нескольких дисковых разделов являются тома в ОС Novell NetWare или так называемые RAID-массивы.
На разных логических устройствах одного и того же физического диска могут располагаться файловые системы разного типа. Все разделы одного диска имеют одинаковый размер блока, определенный для данного диска в результате низкоуровневого форматирования. Однако в результате высокоуровневого форматирования в разных разделах одного и того же диска, представленных разными логическими устройствами, могут быть установлены файловые системы, в которых определены кластеры отличающихся размеров.
Операционная система может поддерживать разные статусы разделов, особым образом отмечая разделы, которые могут быть использованы для загрузки модулей операционной системы, и разделы, в которых можно устанавливать только приложения и хранить файлы данных. Один из разделов диска помечается как загружаемый (или активный). Именно из этого раздела считывается загрузчик операционной системы.