
- •Оглавление
- •Введение
- •1. Назначение и функции операционной системы
- •1. 1. Функциональные компоненты операционной системы автономного компьютера
- •1. 1. 1. Управление процессами
- •1. 1. 2. Управление памятью
- •1. 1. 3. Управление файлами и внешними устройствами
- •1. 1. 4. Защита данных и администрирование
- •1. 1. 5. Интерфейс прикладного программирования
- •1. 1. 6. Пользовательский интерфейс
- •Вопросы для самопроверки
- •Контрольные вопросы
- •1. 2. Сетевые операционные системы
- •1. 2. 1. Сетевые и распределенные ос
- •1. 2. 2. Два значения термина «сетевая ос»
- •1. 2. 3. Функциональные компоненты сетевой ос
- •1. 2. 4. Сетевые службы и сетевые сервисы
- •1. 2. 5. Встроенные сетевые службы и сетевые оболочки
- •1.3 Одноранговые и серверные сетевые операционные системы
- •1.3.1 Ос в одноранговых сетях
- •1.3.2 Ос в сетях с выделенными серверами
- •1. 4. Требования к современным операционным системам
- •Вопросы для самопроверки
- •Контрольные вопросы
- •2. Архитектура операционной системы
- •2. 1. Ядро и вспомогательные модули ос
- •2. 2. Ядро и привилегированный режим
- •2. 3. Многослойная структура ос
- •2. 4. Аппаратная зависимость и переносимость ос
- •2. 5. Переносимость операционной системы
- •Вопросы для самопроверки
- •Контрольные вопросы
- •2. 6. Микроядерная архитектура
- •2 .6. 1. Концепция
- •2. 6. 2. Преимущества и недостатки микроядерной архитектуры
- •2. 7. Совместимость и множественные прикладные среды
- •2. 7. 1. Двоичная совместимость и совместимость исходных текстов
- •2. 7. 2. Трансляция библиотек
- •2. 7. 3. Способы реализации прикладных программных сред
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. Процессы и потоки
- •3. 1. Мультипрограммирование
- •3. 1. 1. Мультипрограммирование в системах пакетной обработки
- •3. 1. 2. Мультипрограммирование в системах разделения времени
- •3. 1. 3. Мультипрограммирование в системах реального времени
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. 2. Мультипроцессорная обработка
- •Вопросы для самопроверки
- •Контрольные вопросы
- •3. 3. Планирование процессов и потоков
- •3. 4. Понятия «процесс» и «поток»
- •3 .4. 1. Создание процессов и потоков
- •3. 4. 2. Планирование и диспетчеризация потоков
- •3. 4. 3. Состояния потока
- •3. 4. 4. Вытесняющие и невытесняющие алгоритмы планирования
- •3. 4. 5. Алгоритмы планирования, основанные на квантовании
- •3. 4. 6. Алгоритмы планирования, основанные на приоритетах
- •3. 4. 7. Смешанные алгоритмы планирования
- •3.5 Мультипрограммирование на основе прерываний
- •3.5.1 Назначение и типы прерываний
- •3.5.2 Механизм прерываний
- •3.5.3 Программные прерывания
- •3.5.4 Диспетчеризация и приоритезация прерываний в ос
- •3.5.5 Функции централизованного диспетчера прерываний на примере Windows nt
- •3.5.6 Процедуры обработки прерываний и текущий процесс
- •3.5.7 Системные вызовы
- •3. 6. Синхронизация процессов и потоков
- •3. 5. 1. Цели и средства синхронизации
- •3.6.2 Необходимость синхронизации и гонки
- •3.6.3 Критическая секция
- •3.6.4 Блокирующие переменные
- •3.6.5 Семафоры
- •3.6.6 Тупики
- •3.6.7 Синхронизирующие объекты ос
- •3.6.8 Сигналы
- •Вопросы для самопроверки
- •Контрольные вопросы
- •4. Управление памятью
- •4. 1. Функции ос по управлению памятью
- •4. 2. Типы адресов
- •Вопросы для самопроверки
- •Контрольные вопросы
- •4. 3. Алгоритмы распределения памяти
- •4. 3. 1. Алгоритмы распределения без использования внешней памяти Распределение памяти динамическими разделами
- •Перемещаемые разделы
- •4. 3. 2. Алгоритмы распределения с использованием внешней памяти
- •Свопинг и виртуальная память
- •Страничное распределение
- •Сегментное распределение
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
- •4.4 Кэширование данных
- •4. 4. 1 Иерархия запоминающих устройств
- •4.4.3 Проблема согласования данных
- •4.4.4 Способы отображения основной памяти на кэш
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. Ввод-вывод и файловая система
- •5. 1. Задачи ос по управлению файлами и устройствами
- •5. 2. Специальные файлы
- •5. 3. Логическая организация файловой системы
- •5. 3. 1. Цели и задачи файловой системы
- •5. 3. 2. Типы файлов
- •5. 3. 3. Иерархическая структура файловой системы
- •5. 3. 4. Имена файлов
- •5. 3. 5. Монтирование
- •5. 3. 6. Атрибуты файлов
- •5. 3. 7. Логическая организация файла
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 4. Физическая организация файловой системы
- •5. 4. 1. Диски, разделы, секторы, кластеры
- •5. 4. 2. Физическая организация и адресация файла
- •2048 Записей
- •5. 5. Физическая организация fat
- •5. 6. Физическая организация s5 и ufs
- •5. 7. Физическая организация ntfs
- •5. 7. 1. Структура тома ntfs
- •5. 7. 2. Структура файлов ntfs
- •5. 7. 3. Каталоги ntfs
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 8. Контроль доступа к файлам
- •5. 8. 1. Доступ к файлам как частный случай доступа к разделяемым ресурсам
- •5. 8. 2. Механизм контроля доступа
- •5. 8. 3. Организация контроля доступа в ос unix
- •Процесс
- •Запрос операции
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5. 8. 4. Организация контроля доступа в ос Windows nt
- •Разрешения на доступ к каталогам и файлам
- •Вопросы для самопроверки
- •Контрольные вопросы
- •5.9 Отказоустойчивость файловых систем
- •5.9.1 Восстанавливаемость файловых систем Причины нарушения целостности файловых систем
- •5.9.2 Протоколирование транзакций
- •5.9.3 Восстанавливаемость файловой системы ntfs
- •5.9.4 Избыточные дисковые подсистемы raid
- •Библиографический список
- •Ответы на вопросы для самопроверки
3.6.3 Критическая секция
Важным понятием синхронизации потоков является понятие «критической секции» программы. Критическая секция — это часть программы, результат выполнения которой может непредсказуемо меняться, если переменные, относящиеся к .этой части программы, изменяются другими потоками в то время, когда выполнение этой части еще не завершено. Критическая секция всегда определяется по отношению к определенным критическим данным, при несогласованном изменении которых могут возникнуть нежелательные эффекты. В предыдущем примере такими критическими данными являлись записи файла базы данных. Во всех потоках, работающих с критическими данными, должна быть определена критическая секция. Заметим, что в разных потоках критическая секция состоит в общем случае из разных последовательностей команд.
Чтобы исключить эффект гонок по отношению к критическим данным, необходимо обеспечить, чтобы в каждый момент времени в критической секции, связанной с этими данными, находился только один поток. При этом неважно, находится этот поток в активном или в приостановленном состоянии. Этот прием называют взаимным исключением. Операционная система использует разные способы реализации взаимного исключения. Некоторые способы пригодны для взаимного исключения при вхождении в критическую секцию только потоков одного процесса, в то время как другие могут обеспечить взаимное исключение и для потоков разных процессов.
Самый простой и в то же время самый неэффективный способ обеспечения Взаимного исключения состоит в том, что операционная система позволяет потоку запрещать любые прерывания на время его нахождения в критической секции. Однако этот способ практически не применяется, так как опасно доверять управление системой пользовательскому потоку — он может надолго занять процессор, а при крахе потока в критической секции крах потерпит вся система, потому что прерывания никогда не будут разрешены.
3.6.4 Блокирующие переменные
Для синхронизации потоков одного процесса прикладной программист может использовать глобальные блокирующие переменные. С этими переменными, к которым все потоки процесса имеют прямой доступ, программист работает, не обращаясь к системным вызовам ОС.
Рис. 4.18. Реализация критических секций с использованием блокирующие переменных
Каждому набору критических данных ставится в соответствие двоичная переменная, которой поток присваивает значение 0, когда он входит в критическую секцию, и значение 1, когда он ее покидает. На рис. 4.18 показан фрагмент алгоритма потока, использующего для реализации взаимного исключения доступа к критическим данным 0 блокирующую переменную F(D). Перед входом в критическую секцию поток проверяет, не работает ли уже какой-нибудь поток с данными D. Если переменная F(D) установлена в 0, то данные заняты и проверка циклически повторяется. Если же данные свободны (F(D) » 1), то значение переменной F(D) устанавливается в 0 и поток входит в критическую секцию. После того как поток выполнит все действия с данными D, значение переменной F(D) :нова устанавливается равным 1.
Блокирующие переменные могут использоваться не только при доступе к разделяемым данным, но и при доступе к разделяемым ресурсам любого вида.
Если все потоки написаны с учетом вышеописанных соглашений, то взаимное исключение гарантируется. При этом потоки могут быть прерваны операционной системой в любой момент и в любом месте, в том числе в критической секции.
Однако следует заметить, что одно ограничение на прерывания все же имеется. Нельзя прерывать поток между выполнением операций проверки и установки блокирующей переменной. Поясним это. Пусть в результате проверки переменной поток определил, что ресурс свободен, но сразу после того, не успев установить переменную в 0, был прерван. За время его приостановки другой поток занял ресурс, вошел в свою критическую секцию, но также был прерван, не завершив работы с разделяемым ресурсом. Когда управление было возвращено первому потоку, он, считая ресурс свободным, установил признак занятости и начал выполнять свою критическую секцию. Таким образом, был нарушен принцип взаимного исключения, что потенциально может привести к нежелательным последствиям. Во избежание таких ситуаций в системе команд многих компьютеров предусмотрена единая, неделимая команда анализа и присвоения значения логической переменной (например, команды ВТС, BTR и BTS процессора Pentium). При отсутствии такой команды в процессоре соответствующие действия должны реализовываться специальными системными примитивами, которые бы запрещали прерывания на протяжении всей операции проверки и установки.
Реализация взаимного исключения описанным выше способом имеет существенный недостаток: в течение времени, когда один поток находится в критической секции, другой поток, которому требуется тот же ресурс, получив доступ к процессору, будет непрерывно опрашивать блокирующую переменную, бесполезно тратя выделяемое ему процессорное время, которое могло бы быть использовано для выполнения какого-нибудь другого потока. Для устранения этого недостатка во многих ОС предусматриваются специальные системные вызовы для работы с критическими секциями.
На рис. 4.19 показано, как с помощью этих функций реализовано взаимное исключение в операционной системе Windows NT. Перед тем как начать изменение критических данных, поток выполняет системный вызов Enter-Critical Section О. В рамках этого вызова сначала выполняется, как и в предыдущем случае, проверка блокирующей переменной, отражающей состояние критического ресурса. Если системный вызов определил, что ресурс занят (FCD) - 0), он в отличие от предыдущего случая не выполняет циклический опрос, а переводит поток в состояние ожидания (D) и делает отметку о том, что данный поток должен быть активизирован, когда соответствующий ресурс освободится. Поток, который в это время использует данный ресурс, после выхода из критической секции должен выполнить системную функцию LeaveCriticalSectionQ, в результате чего блокирующая переменная принимает значение, соответствующее свободному состоянию ресурса (F(D) = 1), а операционная система просматривает очередь ожидающих этот ресурс потоков и переводит первый поток из очереди в состояние готовности.
Продолжение вычислений
Рис. 4.19. Реализация взаимного исключения с использованием системных функций входа в критическую секцию и выхода ив нее
Таким образом исключается непроизводительная потеря процессорного времени на циклическую проверку освобождения занятого ресурса. Однако в тех случаях, когда объем работы в критической секции небольшой и существует высокая вероятность в очень скором доступе к разделяемому ресурсу, более предпочтительным может оказаться использование блокирующих переменных. Действительно, в такой ситуации накладные расходы ОС по реализации функции входа в критическую секцию и выхода из нее могут превысить полученную экономию.