
- •Общая физика
- •Система отсчета. Материальная точка. Радиус-вектор и вектор перемещения, их связь с координатами точки.
- •Кинематика. 1.3
- •Кинематика. 1.4
- •Кинематика. 1.5
- •Кинематика. 1.6
- •Кинематика. 1.7
- •Кинематика. 1.8
- •Кинематика. 1.9
- •Кинематика. 1.10
- •Лекция 2
- •Кинематика. 2.2
- •Кинематика. 2.3
- •Кинематика. 2.4
- •Кинематика. 2.5
- •Кинематика. 2.6
- •Кинематика. 2.7
- •Кинематика. 2.8
- •Кинематика. 2.9
- •Кинематика. 2.10
- •Лекция 3
- •Динамика. 3.2
- •Динамика. 3.3
- •Динамика. 3.4
- •Динамика. 3.5
- •Динамика. 3.6
- •Динамика. 3.7
- •Динамика. 3.8
- •Динамика. 3.9
- •Динамика. 3.10
- •Динамика. 3.11
- •Замкнутая система материальных точек. Закон сохранения импульса. Момент импульса, закон сохранения момента импульса.
- •Законы сохранения. 4.2
- •Законы сохранения. 4.3
- •Законы сохранения. 4.4
- •Законы сохранения. 4.5
- •Законы сохранения. 4.7
- •Законы сохранения. 4.8
- •Законы сохранения. 4.9
- •Законы сохранения. 4.10
- •Законы сохранения. 4.11
- •Лекция 5
- •Законы сохранения. 5.2
- •Законы сохранения. 5.3
- •Законы сохранения. 5.4
- •Законы сохранения. 5.5
- •Законы сохранения. 5.6
- •Законы сохранения. 5.7
- •Законы сохранения. 5.8
- •Законы сохранения. 5.9
- •Законы сохранения. 5.10
- •Упругие и квазиупругие силы. Закон Гука. Гармонические
- •Колебания. 6.2
- •Колебания. 6.3
- •Колебания. 6.4
- •Колебания. 6.5
- •Колебания. 6.6
- •Колебания. 6.7
- •Колебания. 6.8
- •Колебания. 6.9
- •Колебания. 6.10
- •Лекция 7 Затухающие колебания. Коэффициент затухания и
- •Колебания. 7.2
- •Колебания. 7.3
- •Колебания. 7.4
- •Колебания. 7.5
- •Колебания. 7.6
- •Колебания. 7.7
- •Колебания. 7.8
- •Колебания. 7.9
- •Колебания. 7.10
- •Лекция 8 Вынужденные колебания. Резонанс
- •Вынужденные колебания. 8.2
- •Вынужденные колебания. 8.3
- •Вынужденные колебания. 8.4
- •Вынужденные колебания. 8.5
- •Вынужденные колебания. 8.6
- •Вынужденные колебания. 8.7
- •Вынужденные колебания. 8.8
- •Вынужденные колебания. 8.9
- •Вынужденные колебания. 8.10
- •Лекция 9
- •Основы МКТ. 9.2
- •Основы МКТ. 9.3
- •Основы МКТ. 9.4
- •Основы МКТ. 9.5
- •Основы МКТ. 9.6
- •Основы МКТ. 9.7
- •Основы МКТ. 9.8
- •Основы МКТ. 9.9
- •Основы МКТ. 9.10
- •Связь кинетической энергии молекул газа с температурой и
- •Основы МКТ. 10.2
- •Основы МКТ. 10.3
- •Основы МКТ. 10.4
- •Основы МКТ. 10.5
- •Основы МКТ. 10.6
- •Основы МКТ. 10.7
- •Основы МКТ. 10.8
- •Основы МКТ. 10.9
- •Основы МКТ. 10.10
- •Внутренняя энергия термодинамической системы. Теплоемкость. Работа, совершаемая газом при изменении объема
- •Термодинамика. 11.2
- •Термодинамика. 11.3
- •Термодинамика. 11.4
- •Термодинамика. 11.5
- •Термодинамика. 11.6
- •Термодинамика. 11.7
- •Термодинамика. 11.8
- •Термодинамика. 11.9
- •Термодинамика. 11.10
- •Лекция 12 Распределение молекул газа по скоростям. Функция
- •Распределение Максвелла. 12.2
- •Распределение Максвелла. 12.3
- •Распределение Максвелла. 12.4
- •Распределение Максвелла. 12.5
- •Распределение Максвелла. 12.6
- •Распределение Максвелла. 12.7
- •Распределение Максвелла. 12.8
- •Распределение Максвелла. 12.9
- •Распределение Максвелла. 12.10
- •Опыты Штерна и Ламмерта. Идеальный газ в поле силы тяжести, барометрическая формула. Распределения
- •Распределение Больцмана. 13.2
- •Распределение Больцмана. 13.3
- •Распределение Больцмана. 13.4
- •Распределение Больцмана. 13.5
- •Распределение Больцмана. 13.6
- •Распределение Больцмана. 13.7
- •Распределение Больцмана. 13.8
- •Распределение Больцмана. 13.9
- •Распределение Больцмана. 13.10
- •Лекция 14
- •Основы термодинамики. 14.2
- •Основы термодинамики. 14.3
- •Основы термодинамики. 14.4
- •Основы термодинамики. 14.5
- •Основы термодинамики. 14.6
- •Основы термодинамики. 14.7
- •Основы термодинамики. 14.8
- •Основы термодинамики. 14.9
- •Основы термодинамики. 14.10
- •Основы термодинамики. 14.11
- •Основы термодинамики. 14.12
- •Лекция 15 Электрические заряды. Точечный заряд. Закон Кулона.
- •Электростатика. 15.2
- •Электростатика. 15.3
- •Электростатика. 15.4
- •Электростатика. 15.5
- •Электростатика. 15.6
- •Электростатика. 15.7
- •Электростатика. 15.8
- •Электростатика. 15.9
- •Электростатика. 15.10
- •Лекция 16 Поток вектора напряженности электрического поля. Теорема
- •Электростатика. 16.2
- •Электростатика. 16.3
- •Электростатика. 16.4
- •Электростатика. 16.5
- •Электростатика. 16.6
- •Электростатика. 16.7
- •Электростатика. 16.8
- •Электростатика. 16.9
- •Электростатика. 16.10
- •Лекция 17 Работа сил электростатического поля. Потенциал.
- •Электростатика. 17.2
- •Электростатика. 17.3
- •Электростатика. 17.4
- •Электростатика. 17.5
- •Электростатика. 17.6
- •Электростатика. 17.7
- •Электростатика. 17.8
- •Электростатика. 17.9
- •Электростатика. 17.10
- •Лекция 18 Поле В. Сила Лоренца. Закон Био – Савара. Циркуляция и
- •Магнитное поле в вакууме 18.2
- •Магнитное поле в вакууме 18.3
- •Магнитное поле в вакууме 18.4
- •Магнитное поле в вакууме 18.5
- •Магнитное поле в вакууме 18.6
- •Магнитное поле в вакууме 18.7
- •Магнитное поле в вакууме 18.8
- •Магнитное поле в вакууме 18.9
- •Магнитное поле в вакууме 18.10
- •Лекция 19
- •Магнитное поле в вакууме 19.2
- •Магнитное поле в вакууме 19.3
- •Магнитное поле в вакууме 19.4
- •Магнитное поле в вакууме 19.5
- •Магнитное поле в вакууме 19.6
- •Магнитное поле в вакууме 19.7
- •Магнитное поле в вакууме 19.8
- •Магнитное поле в вакууме 19.9
- •Магнитное поле в вакууме 19.10
- •Магнитное поле в вакууме 19.11
- •Лекция 20 Сила Ампера. Работа поля В при перемещении контура
- •Магнитное поле в вакууме 20.2
- •Магнитное поле в вакууме 20.3
- •Магнитное поле в вакууме 20.4
- •Магнитное поле в вакууме 20.5
- •Магнитное поле в вакууме 20.6
- •Магнитное поле в вакууме 20.7
- •Магнитное поле в вакууме 20.8
- •Магнитное поле в вакууме 20.9
- •Магнитное поле в вакууме 20.10
- •Магнитное поле в вакууме 20.11
- •Магнитное поле в вакууме 20.12
- •Лекция 21
- •Диэлектрики 21.2
- •Диэлектрики 21.3
- •Диэлектрики 21.4
- •Диэлектрики 21.5
- •Диэлектрики 21.6
- •Диэлектрики 21.7
- •Диэлектрики 21.8
- •Диэлектрики 21.9
- •Диэлектрики 21.10
- •Лекция 22
- •Магнетики 22.2
- •Магнетики 22.3
- •Магнетики 22.4
- •Магнетики 22.5
- •Магнетики 22.6
- •Магнетики 22.7
- •Магнетики 22.8
- •Магнетики 22.9
- •Магнетики 22.10
- •Магнетики 22.11
- •Лекция 23 Законы геометрической оптики. Принцип Ферма. Явление
- •Геометрическая оптика 23.2
- •Геометрическая оптика 23.3
- •Геометрическая оптика 23.4
- •Геометрическая оптика 23.4
- •Геометрическая оптика 23.5
- •Геометрическая оптика 23.6
- •Геометрическая оптика 23.7
- •Геометрическая оптика 23.8
- •Геометрическая оптика 23.9
- •Геометрическая оптика 23.10
- •Лекция 24 Оптическая система. Кардинальные плоскости.
- •Оптическая система. 24.2
- •Оптическая система. 24.3
- •Оптическая система. 24.4
- •Оптическая система. 24.5
- •Оптическая система. 24.6
- •Оптическая система. 24.7
- •Оптическая система. 24.8
- •Оптическая система. 24.9
- •Оптическая система. 24.10
- •Лекция 25
- •Тонкие линзы. 25.2
- •Тонкие линзы. 25.3
- •Тонкие линзы. 25.4
- •Тонкие линзы. 25.5
- •Тонкие линзы. 25.6
- •Тонкие линзы. 25.7
- •Тонкие линзы. 25.8
- •Тонкие линзы. 25.9
- •Тонкие линзы. 25.10
- •Интерференция света. Когерентные источники. Интерференция от двух когерентных источников. Бипризма Френеля. Интерференция при
- •Интерференция. 26.2
- •Интерференция. 26.3
- •Интерференция. 26.4
- •Интерференция. 26.5
- •Интерференция. 26.6
- •Интерференция. 26.7
- •Интерференция. 26.8
- •Интерференция. 26.9
- •Интерференция. 26.10
- •Интерференция. 26.11
- •Интерференция. 26.12
- •Лекция 27 Дифракция света. Принцип Гюйгенса-Френеля. Зоны
- •Дифракция. 27.2
- •Дифракция. 27.3
- •Колебания приходящие в точку Р от аналогичных точек двух соседних зон, находятся в
- •Дифракция. 27.5
- •Дифракция. 27.6
- •Дифракция. 27.7
- •Дифракция. 27.8
- •Дифракция. 27.9
- •Дифракция. 27.10
- •Дифракция Френеля от простейших преград. Дифракция от
- •Дифракция. 28.2
- •Дифракция. 28.3
- •Дифракция. 28.4
- •Дифракция. 28.5
- •Дифракция. 28.6
- •Дифракция. 28.7
- •Дифракция. 28.8
- •Дифракция. 28.9
- •Дифракция. 28.10
- •Закономерности в атомных спектрах. Опыт по рассеянию альфа частиц.
- •Атомная физика. 29.2
- •Атомная физика. 29.3
- •Атомная физика. 29.4
- •Атомная физика. 29.5
- •Атомная физика. 29.6
- •Атомная физика. 29.7
- •Атомная физика. 29.8
- •Атомная физика. 29.9
- •Атомная физика. 29.10
- •Лекция 30 Гипотеза де Бройля. Принцип неопределенности.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Элементы квантовой механики.
- •Лекция 31 Таблица Менделеева. Состав и характеристики атомного
- •Элементы атомной физики. 31.2
- •Элементы атомной физики. 31.3
- •Элементы атомной физики. 31.4
- •Элементы атомной физики. 31.5
- •Элементы атомной физики. 31.6
- •Элементы атомной физики. 31.7
- •Элементы атомной физики. 31.8
- •Элементы атомной физики. 31.9
- •Элементы атомной физики. 31.10
- •Элементы атомной физики. 31.11

Магнитное поле в вакууме 18.7
Элементарный заряд q равен ρdV, где dV – элементарный
объем, ρ – объемная плотность заряда, являющегося носителем тока, учтем также, что ρv=j плотность тока.
Тогда магнитное поле, создаваемое таким зарядом равно: |
||||
dB |
0 |
|
jr dV |
|
4 |
|
r3 |
||
|
|
Магнитное поле создаваемое линейным элементом тока выглядит следующим образом:
dB |
0 |
|
I dl,r |
4 |
|
r3 |
|
|
|
Полное поле В в соответствии с принципом суперпозиции находим интегрированием этих выражений по всем элементам тока
|
0 |
jr dV |
|
0 |
|
I dl,r |
||
|
|
4 Ñ |
|
|||||
dB |
|
|
r3 |
dB |
r3 |
|||
4 |

Магнитное поле в вакууме 18.8
Как и любое другое векторное поле, поле В может быть представлено наглядно с помощью лини вектора В. Их проводят обычным способом – так, чтобы касательная к этим линиям в каждой точке совпадала с направлением вектора В, а густота линий была бы пропорциональна модулю вектора В в данном месте.
Магнитное поле обладает, как и электрическое поле, двумя важнейшими свойствами – поток и циркуляция вектора В.
Поток вектора В сквозь любую замкнутую поверхность
равен нулю: |
Ñ |
|
BdS 0 |
Равенство потока вектора В нулю также является следствием
того, что в природе не существует магнитных зарядов на которых начинались бы или заканчивались линии магнитной
индукции В.

Магнитное поле в вакууме 18.9
Расчеты магнитного поля токов часто упрощаются при учете
симметрии в конфигурации токов, создающих поле. В этом случае расчеты можно выполнять с помощью теоремы о
циркуляции вектора магнитной индукции.
Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый
контур (не обязательно плоский) и указано положительное направление обхода контура. На каждом отдельном малом участке dl этого контура можно
определить касательную составляющую Bl вектора B в данном месте, то есть определить проекцию вектора B на
направление касательной к данному участку контура.

Магнитное поле в вакууме 18.10
Теорема о циркуляция вектора В: циркуляция вектора В по произвольному контуру равна произведению μ0 на алгебраическую сумму токов, охватываемых контуром:
ÑBdl 0 Ik
Причем Ik – величины алгебраические. Ток считается
положительным, если его направление связано с направлением обхода по контуру правилом правого винта. Ток противоположного отрицательным.

Лекция 19
Применение теоремы о циркуляции вектора В. Поле прямого тока. Применение теоремы о циркуляции вектора В. Поле соленоида.
Магнитно поле прямого тока.
Пусть постоянный ток I течет вдоль бесконечно длинного прямого провода, имеющего круглое сечение радиуса а. Необходимо найти индукцию В поля снаружи и внутри провода.
Из симметрии задачи следует, что линии вектора В в данном
случае должны иметь вид окружностей с центром на оси провода. Причем модуль вектора В должен быть одинаков во всех точках на расстоянии r от оси провода. Поэтому по теореме о
циркуляции вектора В для |
|
круглого контура , откуда |
|
|
I |
следует, что внеBпров0 |
ода (r>a). |
2 |
r |

Магнитное поле в вакууме 19.2
Внутри провода из тех же соображений
симметрии следует, что линии вектора В являются тоже окружностями.
Поэтому выбираем контур виде
окружности. По теореме о циркуляции
для контураB внутри2 r проводаI
0 r
где Ir – ток, охватываемый
контуром .
Он пропорционален площади охватываемой контуром.
r |
2 |
|
|
||
Ir =I |
|
|
|
||
a |
|
тсюда находим, что внутри провода:
B 0 Ir2
2 a
r a

Магнитное поле в вакууме 19.3
Магнитное поле соленоида.
Пусть ток I течет по проводнику, намотанному по винтовой линии на поверхность цилиндра. Такой, обтекаемый током цилиндр называется соленоидом. Пусть на единицу длины соленоида приходится n витков проводника. Если шаг винтовой линии достаточно мал, то каждый виток соленоида
можно приближенно заменить замкнутым витком. Предполагается, что сечение проводника настолько мало, что можно считать, соленоида.

Магнитное поле в вакууме 19.4
Опыт показывает на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри соленоида.
Из соображений симметрии ясно, что линии вектора В внутри соленоида направлены вдоль его оси, причем вектор В
составляет с направлением тока
Такая конфигурация линий поля подсказывает выбрать контур в виде прямоугольника, две стороны которого параллельны линиям поля, причем одна из них находится вне соленоида. Вторые две стороны
оказываются перпендикулярны линиям магнитной индукции.

Магнитное поле в вакууме 19.5
В итоге получаем, что циркуляция по трем из четырех сторон
прямоугольника равна нулю. По стороне вне соленоида, так
как там нет поля. По сторонам перпендикулярным полю, так
как проекция линий поля на них равна нулю. Тогда согласно
теореме о циркуляции получаем
Bl 0nlI
где l - длина стороны параллельной линиям магнитной |
|
индукции. Окончательно получаем, поле внутри длинного |
|
соленоида имеет вид: |
B 0nI |
|
Т.е. поле внутри длинного соленоида однородно (за исключением областей, прилегающих к торцам соленоида).
Произведение nI называют числом ампервитков.

Магнитное поле в вакууме 19.6
Магнитное поле тороида.
Тороид представляет собой провод, навитый на каркас, имеющий форму тора. Предполагается, что катушка по которой течет ток I плотно, то есть виток к витку, намотана на
немагнитный тороидальный сердечник.
Из соображений симметрии можно понять, что линии вектора В
должны быть окружностями, центры которых расположены на оси тороида. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Поэтому ясно, что в качестве контура следует взять одну из таких окружностей.