
- •Лекция 1 (db_l01.Ppt)
- •1.2. Компоненты банка данных
- •1.3. Цель, задачи и структура курса (Слайд 11)
- •Классификация бд. Фактографические и документальные бд.
- •2.2. Фактографические и документальные бд
- •2.3. Бд оперативной и ретроспективной информации. Хранилища данных
- •Лекция 3 (db_l03.Ppt)
- •3.2. Типология свойств и связей объекта
- •3.3. Многоуровневые модели предметной области
- •3.4. Идентификация объектов и записей
- •Лекция 4 (db_l04.Ppt) Теоретические основы фактографических бд. Реляционная алгебра и реляционное исчисление. Основные операции реляционной алгебры и реляционного исчисления при обработке данных
- •4.1. Основные понятия реляционной модели данных
- •4.2. Основы реляционной алгебры
- •4.3. Реляционное исчисление
- •5.1. Документальные информационные системы, основанные на концепции бд
- •5.2. Теоретико-множественная модель индексирования и поиска (слайд 4)
- •5.3. Линейное описание информационных массивов (слайд 5)
- •5.5. Критерий смыслового соответствия (ксс)
- •5.6. Логическая структура документальной аипс.
- •5.7. Документо-ориентированная база данных Lotus Domino/Notes
- •5.8. Модель полнотекстовых документов
- •Лекция 7 (db_l07)
- •7.2. Типология моделей
- •7.3. Этапы проектирования и объекты моделирования
- •7.4. Подходы к проектированию базы данных
- •7.5. Инфологические модели (системный анализ) предметной области
- •7.6. Даталогические модели
- •7.7. Физические модели
- •7.8. Средства автоматизации проектирования
- •Лекция 8 (db_l08) Инфологическое (концептуальное) моделирование предметной области (ПрО). Анализ предметной области. Синтез концептуальной модели предметной области.
- •8.1. Инфологическое проектирование и семантическая модель
- •8.2. Анализ ПрО - Определение информационных потребностей пользователей
- •8.3. Критерии оценки модели
- •Лекция 9 (db_l09) Модель «сущность-связь». Основные понятия: Сущность, Свойства, Связи. Представление сущностей, свойств, связей
- •9.1. Модель «Сущность-Связь»
- •9.2. Er- диаграмма
- •Лекция 10 (db_l10.Ppt). Методы и языки моделирования. Структурный подход и методика idef. Диаграммы потоков данных Объектно-ориентированная методология. Язык uml
- •10.1. Структурная методология
- •10.1.1. Функциональная модель idef0
- •10.1.2. Метод моделирования idef3
- •10.1.3. Диаграммы потоков данных (Data Flow Diagrams - dfd)
- •10.2. Объектно-ориентированная методология
- •10.2.1. Язык uml
- •10.2.2. Диаграммы uml
- •Лекция 11 (db_l11.Ppt). Даталогические модели (логические модели данных). Иерархические, сетевые, реляционные модели данных. Принципы построения. Преимущества и недостатки.
- •Итак, модель данных – модель логического уровня проектирования бд. Ее можно рассматривать как сочетание трех компонентов (слайд 2):
- •11.3. Сетевая модель данных
- •11.4. Иерархическая модель данных
- •11.5. Преимущества и недостатки моделей (слайд 13)
- •11.6. Документальные системы и интеграция моделей.
- •Лекция 12 (db_l12.Ppt).
- •12.1.2. Управляющий компонент реляционной модели
- •12.1.3. Целостность данных (слайд 5)
- •12.1.4. Правила Кодда
- •12.2. Нормализация.
- •12.2.1. Функциональные зависимости
- •12.2.2. Нормальные формы
- •12.3. Процедура нормализации (слайд 14)
- •12.4. Получение реляционной схемы из er-диаграммы (слайд 17)
- •Лекция 13 (db_l13.Ppt). Восходящее проектирование и нисходящее проектирование. Пример проектирования реляционной бд
- •13.1. Постановка задачи
- •13.2. Нисходящее проектирование
- •13.2.1. Построение инфологической модели
- •13.2.2. Построение реляционной схемы
- •13.2.3. Нормализация таблиц
- •13.2.4. Физическая модель
- •Лекция 14 (db_l14.Ppt).
- •14.1.2. Демонстрация постреляционной модели данных на примере задачи «Сессия»
- •14.1.3. Обзор распространенных постреляционных субд
- •UniVerse
- •Postgres (слайд 5)
- •14.1.4. Достоинства и недостатки постреляционной модели данных (слайд 6)
- •14.2. Объектно-ориентированная модель данных
- •14.2.1. Основы объектно-ориентированного подхода
- •14.2.2. Объектно-ориентированный подход в сфере баз данных
- •14.2.3. Пример структуры оо базы данных
- •14.2.4. Обзор распространенных оо субд (слайд 13)
- •14.2.5. Достоинства и недостатки объектно-ориентированной модели данных
- •14.3. Технологии интеграции распределенных данных на основе xml
- •14.3.1. Технологии xml (слайд 15)
- •14.3.2. Основы xml
- •3) Элементы xml должны быть правильно вложены друг в друга
- •4) Xml-документы должны иметь единственный корневой элемент
- •5) Значения атрибутов всегда должны быть заключены в кавычки
- •14.3.3. Xml и реляционная модель данных
- •14.3.4. Представление связей с помощью xml
- •Лекция 15 (db_l15.Ppt). Управление реляционными базами данных. Языки определения данных и языки манипулирования данными. Способы выражения запросов: процедурный и форм-ориентированный. .
- •15.1. Язык определения данных — ddl (слайд 3)
- •15.2. Язык управления данными — dml
- •15.2.1. Процедурные языки dml
- •15.2.2. Непроцедурные языки dml
- •15.3. Языки 4gl
- •15.3.1. Генераторы форм
- •15.3.2. Генераторы отчетов
- •15.3.3. Генераторы графического представления данных
- •15.3.4. Генераторы приложений
- •15.4. Sql
- •15.5. Использование средств qbe для создания запросов на выборку данных
- •Лекция 16 (db_l16.Ppt). Основы sql. Описание отношений, доменов, ограничений целостности, представлений данных. Реализация операций реляционной алгебры в sql.
- •16.1.1. Инструкции и имена
- •16.1.2. Типы данных
- •16.1.3. Встроенные функции
- •16.1.4. Значения null
- •16.2. Ограничения целостности
- •16.2.2. Внешний ключ таблицы
- •16.2.3. Определение уникального столбца
- •16.2.4. Определение проверочных ограничений
- •16.2.5. Определение значения по умолчанию
- •16.3. Реализация операций реляционной алгебры в sql (слайд 11)
- •Лекция 17 (db_l17.Ppt). Построение баз данных с помощью sql. Манипулирование данными в sql
- •17.1. Построение баз данных с помощью sql
- •17.1.1. Команда создания таблицы – create table
- •17.1.2. Изменение структуры таблицы – команда alter table
- •17.1.3. Удаление таблиц – команда drop table
- •17.2. Управление данными
- •17.2.1. Извлечение данных – команда select
- •Лекция 18 (db_l18.Ppt).
- •18.1.2. Ключевое слово inner
- •18.1.3. Ключевое слово left [outer]
- •18.2. Раздел group by
- •18.3. Раздел compute
- •18.4. Раздел into. Использование команды select...Into
- •18.5. Добавление данных – команда insert
- •18.5.1. Вставка одной строки
- •18.5.2. Вставка результата запроса
- •18.6. Изменение данных – команда update
- •18.7. Удаление данных – команда delete
- •19.1. Организация данных на машинных носителях
- •19.1.2. Организация файлов - способ размещения записей
- •19.1.3. Способы адресации и методы доступа к записям
- •19.2. Схемы организации данных на внешних носителях
- •19.3. Методы включения записей, основанные на резервировании
- •19.4. Физическое представление иерархических структур
- •19.5. Физическое представление сетевых структур
- •19.6. Физическое представление с разделением данных и связей
- •19.7. Архитектура файловой организации баз данных (слайд 18)
- •19.7.1. Файл-ориентированная организация данных
- •19.7.2. Страничная организация данных
- •19.7.3. Модели распределения данных по физическим носителям
- •Время чтения
- •Лекция 20 (db_l20.Ppt). Примеры моделей хранения и организации доступа к бд (dBase, ms sql Server, Oracle)
- •20.1. Физическая структура данных в dBase
- •20.1.1. Структура основного файла базы данных (типа .Dbf)
- •20.1.2. Структура memo-файла (тип .Fpt)
- •20.1.3. Структура индексного файла (тип .Idx)
- •20.2. Физическая структура данных в ms sql Server
- •20.2.1. Страницы размещения (слайд 12)
- •20.2.2. Карты распределения экстентов
- •20.2.3. Карты свободного пространства
- •20.2.4. Карты размещения
- •20.2.5. Страницы данных (слайд 13)
- •20.2.6. Строки данных
- •20.2.7. Текстовые страницы
- •20.2.8. Индексы (слайд 14)
- •20.3. Организация и оптимизация доступа к данным
- •20.4. Физическая структура данных в субд Oracle
- •20.4.1. Сегменты
- •20.4.2. Экстенты
- •20.4.3. Блоки данных
- •20.4.4. Типы индексов (слайд 17)
- •20.4.5. Кластеры
- •Лекция 21 (db_l21.Ppt). Логическая и физическая схема организации пространства в документальных бд. Примеры моделей хранения и организации доступа.
- •21.1. Модель организации данных системы поиска документов stairs
- •21.2. Логическая и физическая структура бд ипс irbis
- •Лекция 22 (db_l22.Ppt).
- •22.2. Архитектура распределенной обработки данных
- •22.2.1. Архитектура «файл-сервер» (слайд 6)
- •20.2.2. Архитектура «выделенный сервер базы данных» (слайд 8)
- •22.2.3. Архитектура «активный сервер баз данных» (слайд 10)
- •22.2.4. Архитектура «сервер приложений» (слайд 12)
- •Лекция 23 (db_l23.Ppt). Схемы распределения данных и запросов. Обработка распределенных данных и запросов. Многопотоковые и многосерверные архитектуры. Типы параллелелизма при обработке запросов.
- •23.1. Архитектура сервера баз данных
- •23.1.1. Архитектура «один к одному» (слайд 3)
- •23.1.2. Многопотоковая односерверная архитектура (слайд 4)
- •23.1.3. Мультисерверная архитектура (слайд 5)
- •23.1.4. Серверные архитектуры с параллельной обработкой запроса
- •23.2. Технологии и средства доступа к удаленным бд
- •23.2.1. Программное обеспечение распределенных приложений
- •23.2.2. Доступ к базам данных в двухзвенных моделях «клиент-сервер»
- •23.3. Технологии межмодульного взаимодействия
- •23.3.1. Спецификация вызова удаленных процедур
- •23.3.2. Мониторы обработки транзакций (слайд 12)
- •23.3.3. Корпоративные серверы приложений (слайд 13)
- •Лекция 24 (db_l24.Ppt). Многомерная и реляционная модель хранилища. Кубы фактов. Схемы «звезда», «снежинка».
- •24.1. Многомерные схемы данных
- •24.2. Запросы к многомерным данным (слайд 12)
- •Лекция 25 (db_l25.Ppt).
- •Транзакции. Понятие целостности базы данных. Условия целостности.
- •Обработка транзакций. Свойства транзакций. Модель ansi/iso.
- •Назначение и использование журнала транзакций. Откат и восстановление.
- •25.1. Модели транзакций
- •Автоматическое выполнение транзакций
- •Управляемое выполнение транзакций
- •25.2. Журнал транзакций (слайд 8)
- •Лекция 26 (db_l26.Ppt). Параллельное выполнение транзакций. Типы конфликтов. Захваты и блокировки.
- •26.1. Параллельное выполнение транзакций
- •Пропавшие обновления
- •Чтение несогласованных данных (слайд 5)
- •26.2. Сериализация транзакций (слайд 7)
- •26.3. Захват и освобождение объекта
- •27.1. Планирование бд
- •27.2. Управление доступом (слайд 6)
- •27.2.1. Тип подключения к sql Server
- •27.2.2. Пользователи базы данных
- •Права доступа (слайд 8)
- •27.2.3. Роли
- •27.3. Управление обработкой.
- •27.3.1. Представления (слайд 11)
- •27.3.2. Хранимые процедуры (слайд 11)
- •27.4. Управление транзакциями
- •27.5. Резервное копирование и восстановление (слайд 14)
- •Лекция 28 (db_l28.Ppt). Средства создания и управления базами данных на примере субд ms sql Server
- •28.1. Создание бд «Сессия»
- •28.2. Резервное копирование базы данных
- •28.3. Восстановление базы данных
- •Лекция 30 (db_l30.Ppt). Средства и технологии разработки приложений баз данных. Компоненты управления доступом к бд (на примере Delphi)
- •30.1. Средства и технологии разработки приложений баз данных
- •30.2. Набор данных
- •30.3. Разработка приложений доступа к внешним источникам данных
- •Лекция 31 (db_l31.Ppt). Доступ к записям, изменение данных, поиск, фильтрация. Параметризованные запросы. Визуальные компоненты для отображения данных из бд
- •31.1. Доступ к записям
- •31.2. Поиск, фильтрация записей
- •31.3. Изменение данных
- •Параметризованные запросы (слайд 8)
- •Визуальные компоненты для отображения данных из базы данных
- •Лекция 32 (db_l32.Ppt). Настройка драйверов и системной информации. Создание таблиц. Работа с запросами. Примеры
- •32.1. Настройка драйверов и системной информации
- •32.2. Создание таблиц
- •32.3. Работа с запросами
Лекция 22 (db_l22.Ppt).
Локальные, сетевые и распределенные базы данных.
Архитектура «файл-сервер». Двух и трехуровневая архитектура «клиент-сервер».
Модель сервера приложений.
22.1. Основные условия и требования к распределенной обработке данных
Такая отличительная особенность БД, как многоцелевое совместное «параллельное» использование данных, предопределяет наличие средств, обеспечивающих практически одновременный и независимый доступ к одним и тем же данным. При этом сама база может быть размещена на одном или нескольких компьютерах.
Приведем следующие, сформулированные ведущими поставщиками СУБД, свойства «идеальной» системы управления распределенными базами данных (слайд 2):
Прозрачность относительно расположения данных: СУБД должна представлять все данные так, как если бы они были локальными.
Прозрачность относительно сети: СУБД должна одинаково работать в условиях разнородных сетей.
Гетерогенность системы: СУБД должна работать с данными, которые хранятся в системах с различной архитектурой и имеют разную производительность (независимость от СУБД).
Поддержка распределенных запросов: пользователь должен иметь возможность объединять данные из любых баз, даже если они размещены в разных системах.
Поддержка распределенных изменений: пользователь должен иметь возможность изменять данные в любых базах, на доступ к которым у него есть права, даже если эти базы размещены в разных системах.
Поддержка распределенных транзакций: СУБД должна выполнять транзакции, выходящие за рамки одной вычислительной системы, и поддерживать целостность распределенной БД даже при возникновении отказов как в отдельных системах, так и в сети.
Безопасность: СУБД должна обеспечивать защиту всей распределенной БД от несанкционированного доступа.
Универсальность доступа: СУБД должна обеспечивать единую методику доступа ко всем данным.
Однако, ни одна из существующих СУБД не достигает этого идеала в следствие следующих факторов:
Низкая и несбалансированная производительность сетей передачи данных, что в распределенных транзакциях сильно снижает общую производительность обработки.
Обеспечение целостности данных в распределенных транзакциях базируется на принципе «все или ничего» и требует специального протокола двухфазного завершения транзакций, что приводит к длительной блокировке изменяемых данных.
Необходимо обеспечить совместимость данных стандартного типа, для хранения которых в разных системах используются разные физические форматы и кодировки.
Выбор схемы размещения системных каталогов. Если каталог будет храниться в одной системе, то удаленный доступ будет замедлен. Если будет размножен – то изменения придется распространять и синхронизировать.
Необходимо обеспечить совместимость СУБД разных типов и поставщиков.
Увеличение потребностей в ресурсах для координации работы приложений с целью обнаружения и устранения тупиковых ситуаций в распределенных транзакциях.
Именно указанные причины определили на практике частичность и «этапность» введения в СУБД тех или иных возможностей распределенной обработки данных. В простейшем случае пользователь имеет возможность обращаться по сети к записям в БД, размещенным на других компьютерах. В других случаях СУБД сама производит аутентификацию удаленного клиента и устанавливает сетевые соединения.
В общем случае режимы работы с БД можно классифицировать по следующим признакам (слайд 3):
многозадачность - однопользовательский или многопользовательский;
правило обслуживания запросов – последовательное или параллельное;
схема размещение данных – централизованная или распределенная БД.
Следует отметить, что общая тенденция развития технологий обработки данных вполне соответствует этапам развития средств вычислительной техники и информационных технологий, и в первую очередь – сетевых. В этом смысле следует выделить два класса: системы распределенной обработки данных и системы распределенных баз данных.
Системы распределенной обработки данных в основном отражают структуру и свойства многопользовательских операционных систем с базой данных, размещенной на центральном компьютере (мэйнфрейме). Еще до недавнего времени это был единственно возможный вариант вычислительной среды для реализации больших баз данных. Клиентские места в этом случае реализовались либо в виде терминалов или мини-ЭВМ, обеспечивающих в основном ввод-вывод данных и не имеющих собственных вычислительных ресурсов для функционально-ориентированной обработки получаемых данных.
Развитие сетевых технологий в сочетании с широким распространением персональных ЭВМ и внедрением стандартов открытых систем привело к появлению систем баз данных размещенных в сети разнотипных компьютеров. Такие системы распределенных баз данных обеспечивают обработку распределенных запросов, когда при обработке одного запроса используются ресурсы базы, размещенные на различных ЭВМ сети. Система распределенных баз данных состоит из узлов, каждый из которых является СУБД, а узлы взаимодействуют между собой так, что база данных любого узла будет доступна пользователю, так как если бы она была локальной.
Соответственно, программы, обеспечивающие целевую (функциональную) обработку данных, должны быть организованы таким образом, чтобы обеспечить более эффективное использование совокупных вычислительных ресурсов за счет специализированного разделения функций обработки между процессом СУБД и клиентскими функционально-ориентированными процессами.
Для «типового» приложения обработки данных можно выделить следующие группы (уровни) функций (слайд 4):
ввод и отображение данных: внешний (пользовательский) уровень реализации целевой функциональной обработки и представления (Presentation Logic);
функциональная обработка, реализующая алгоритм решения задач пользователя. Соответствующие «бизнес-правила» реализуются обычно средствами высокоуровневого языка программирования или расширенного языка манипулирования данными типа ADABAS Natural или 4-GL (Business Logic);
манипулирование данными БД в рамках приложения, которое обычно реализуется средствами SQL (Database Logic). Кроме того, средствами SQL, помимо операций манипулирования данными (Data Management Logic - извлечения, изменения и т.д.) реализуются общие для БД функции (Common DB Logic), например, правила целостности, типовые представления, которые, по существу, являются общими «бизнес-правилами» на уровне данных;
управление ресурсами БД, реализуемое специализированными средствами конкретной СУБД (Resource Logic);
управление процессами обработки: связывание и синхронизация процессов обработки данных разного уровня.