
- •Лекция 1 (db_l01.Ppt)
- •1.2. Компоненты банка данных
- •1.3. Цель, задачи и структура курса (Слайд 11)
- •Классификация бд. Фактографические и документальные бд.
- •2.2. Фактографические и документальные бд
- •2.3. Бд оперативной и ретроспективной информации. Хранилища данных
- •Лекция 3 (db_l03.Ppt)
- •3.2. Типология свойств и связей объекта
- •3.3. Многоуровневые модели предметной области
- •3.4. Идентификация объектов и записей
- •Лекция 4 (db_l04.Ppt) Теоретические основы фактографических бд. Реляционная алгебра и реляционное исчисление. Основные операции реляционной алгебры и реляционного исчисления при обработке данных
- •4.1. Основные понятия реляционной модели данных
- •4.2. Основы реляционной алгебры
- •4.3. Реляционное исчисление
- •5.1. Документальные информационные системы, основанные на концепции бд
- •5.2. Теоретико-множественная модель индексирования и поиска (слайд 4)
- •5.3. Линейное описание информационных массивов (слайд 5)
- •5.5. Критерий смыслового соответствия (ксс)
- •5.6. Логическая структура документальной аипс.
- •5.7. Документо-ориентированная база данных Lotus Domino/Notes
- •5.8. Модель полнотекстовых документов
- •Лекция 7 (db_l07)
- •7.2. Типология моделей
- •7.3. Этапы проектирования и объекты моделирования
- •7.4. Подходы к проектированию базы данных
- •7.5. Инфологические модели (системный анализ) предметной области
- •7.6. Даталогические модели
- •7.7. Физические модели
- •7.8. Средства автоматизации проектирования
- •Лекция 8 (db_l08) Инфологическое (концептуальное) моделирование предметной области (ПрО). Анализ предметной области. Синтез концептуальной модели предметной области.
- •8.1. Инфологическое проектирование и семантическая модель
- •8.2. Анализ ПрО - Определение информационных потребностей пользователей
- •8.3. Критерии оценки модели
- •Лекция 9 (db_l09) Модель «сущность-связь». Основные понятия: Сущность, Свойства, Связи. Представление сущностей, свойств, связей
- •9.1. Модель «Сущность-Связь»
- •9.2. Er- диаграмма
- •Лекция 10 (db_l10.Ppt). Методы и языки моделирования. Структурный подход и методика idef. Диаграммы потоков данных Объектно-ориентированная методология. Язык uml
- •10.1. Структурная методология
- •10.1.1. Функциональная модель idef0
- •10.1.2. Метод моделирования idef3
- •10.1.3. Диаграммы потоков данных (Data Flow Diagrams - dfd)
- •10.2. Объектно-ориентированная методология
- •10.2.1. Язык uml
- •10.2.2. Диаграммы uml
- •Лекция 11 (db_l11.Ppt). Даталогические модели (логические модели данных). Иерархические, сетевые, реляционные модели данных. Принципы построения. Преимущества и недостатки.
- •Итак, модель данных – модель логического уровня проектирования бд. Ее можно рассматривать как сочетание трех компонентов (слайд 2):
- •11.3. Сетевая модель данных
- •11.4. Иерархическая модель данных
- •11.5. Преимущества и недостатки моделей (слайд 13)
- •11.6. Документальные системы и интеграция моделей.
- •Лекция 12 (db_l12.Ppt).
- •12.1.2. Управляющий компонент реляционной модели
- •12.1.3. Целостность данных (слайд 5)
- •12.1.4. Правила Кодда
- •12.2. Нормализация.
- •12.2.1. Функциональные зависимости
- •12.2.2. Нормальные формы
- •12.3. Процедура нормализации (слайд 14)
- •12.4. Получение реляционной схемы из er-диаграммы (слайд 17)
- •Лекция 13 (db_l13.Ppt). Восходящее проектирование и нисходящее проектирование. Пример проектирования реляционной бд
- •13.1. Постановка задачи
- •13.2. Нисходящее проектирование
- •13.2.1. Построение инфологической модели
- •13.2.2. Построение реляционной схемы
- •13.2.3. Нормализация таблиц
- •13.2.4. Физическая модель
- •Лекция 14 (db_l14.Ppt).
- •14.1.2. Демонстрация постреляционной модели данных на примере задачи «Сессия»
- •14.1.3. Обзор распространенных постреляционных субд
- •UniVerse
- •Postgres (слайд 5)
- •14.1.4. Достоинства и недостатки постреляционной модели данных (слайд 6)
- •14.2. Объектно-ориентированная модель данных
- •14.2.1. Основы объектно-ориентированного подхода
- •14.2.2. Объектно-ориентированный подход в сфере баз данных
- •14.2.3. Пример структуры оо базы данных
- •14.2.4. Обзор распространенных оо субд (слайд 13)
- •14.2.5. Достоинства и недостатки объектно-ориентированной модели данных
- •14.3. Технологии интеграции распределенных данных на основе xml
- •14.3.1. Технологии xml (слайд 15)
- •14.3.2. Основы xml
- •3) Элементы xml должны быть правильно вложены друг в друга
- •4) Xml-документы должны иметь единственный корневой элемент
- •5) Значения атрибутов всегда должны быть заключены в кавычки
- •14.3.3. Xml и реляционная модель данных
- •14.3.4. Представление связей с помощью xml
- •Лекция 15 (db_l15.Ppt). Управление реляционными базами данных. Языки определения данных и языки манипулирования данными. Способы выражения запросов: процедурный и форм-ориентированный. .
- •15.1. Язык определения данных — ddl (слайд 3)
- •15.2. Язык управления данными — dml
- •15.2.1. Процедурные языки dml
- •15.2.2. Непроцедурные языки dml
- •15.3. Языки 4gl
- •15.3.1. Генераторы форм
- •15.3.2. Генераторы отчетов
- •15.3.3. Генераторы графического представления данных
- •15.3.4. Генераторы приложений
- •15.4. Sql
- •15.5. Использование средств qbe для создания запросов на выборку данных
- •Лекция 16 (db_l16.Ppt). Основы sql. Описание отношений, доменов, ограничений целостности, представлений данных. Реализация операций реляционной алгебры в sql.
- •16.1.1. Инструкции и имена
- •16.1.2. Типы данных
- •16.1.3. Встроенные функции
- •16.1.4. Значения null
- •16.2. Ограничения целостности
- •16.2.2. Внешний ключ таблицы
- •16.2.3. Определение уникального столбца
- •16.2.4. Определение проверочных ограничений
- •16.2.5. Определение значения по умолчанию
- •16.3. Реализация операций реляционной алгебры в sql (слайд 11)
- •Лекция 17 (db_l17.Ppt). Построение баз данных с помощью sql. Манипулирование данными в sql
- •17.1. Построение баз данных с помощью sql
- •17.1.1. Команда создания таблицы – create table
- •17.1.2. Изменение структуры таблицы – команда alter table
- •17.1.3. Удаление таблиц – команда drop table
- •17.2. Управление данными
- •17.2.1. Извлечение данных – команда select
- •Лекция 18 (db_l18.Ppt).
- •18.1.2. Ключевое слово inner
- •18.1.3. Ключевое слово left [outer]
- •18.2. Раздел group by
- •18.3. Раздел compute
- •18.4. Раздел into. Использование команды select...Into
- •18.5. Добавление данных – команда insert
- •18.5.1. Вставка одной строки
- •18.5.2. Вставка результата запроса
- •18.6. Изменение данных – команда update
- •18.7. Удаление данных – команда delete
- •19.1. Организация данных на машинных носителях
- •19.1.2. Организация файлов - способ размещения записей
- •19.1.3. Способы адресации и методы доступа к записям
- •19.2. Схемы организации данных на внешних носителях
- •19.3. Методы включения записей, основанные на резервировании
- •19.4. Физическое представление иерархических структур
- •19.5. Физическое представление сетевых структур
- •19.6. Физическое представление с разделением данных и связей
- •19.7. Архитектура файловой организации баз данных (слайд 18)
- •19.7.1. Файл-ориентированная организация данных
- •19.7.2. Страничная организация данных
- •19.7.3. Модели распределения данных по физическим носителям
- •Время чтения
- •Лекция 20 (db_l20.Ppt). Примеры моделей хранения и организации доступа к бд (dBase, ms sql Server, Oracle)
- •20.1. Физическая структура данных в dBase
- •20.1.1. Структура основного файла базы данных (типа .Dbf)
- •20.1.2. Структура memo-файла (тип .Fpt)
- •20.1.3. Структура индексного файла (тип .Idx)
- •20.2. Физическая структура данных в ms sql Server
- •20.2.1. Страницы размещения (слайд 12)
- •20.2.2. Карты распределения экстентов
- •20.2.3. Карты свободного пространства
- •20.2.4. Карты размещения
- •20.2.5. Страницы данных (слайд 13)
- •20.2.6. Строки данных
- •20.2.7. Текстовые страницы
- •20.2.8. Индексы (слайд 14)
- •20.3. Организация и оптимизация доступа к данным
- •20.4. Физическая структура данных в субд Oracle
- •20.4.1. Сегменты
- •20.4.2. Экстенты
- •20.4.3. Блоки данных
- •20.4.4. Типы индексов (слайд 17)
- •20.4.5. Кластеры
- •Лекция 21 (db_l21.Ppt). Логическая и физическая схема организации пространства в документальных бд. Примеры моделей хранения и организации доступа.
- •21.1. Модель организации данных системы поиска документов stairs
- •21.2. Логическая и физическая структура бд ипс irbis
- •Лекция 22 (db_l22.Ppt).
- •22.2. Архитектура распределенной обработки данных
- •22.2.1. Архитектура «файл-сервер» (слайд 6)
- •20.2.2. Архитектура «выделенный сервер базы данных» (слайд 8)
- •22.2.3. Архитектура «активный сервер баз данных» (слайд 10)
- •22.2.4. Архитектура «сервер приложений» (слайд 12)
- •Лекция 23 (db_l23.Ppt). Схемы распределения данных и запросов. Обработка распределенных данных и запросов. Многопотоковые и многосерверные архитектуры. Типы параллелелизма при обработке запросов.
- •23.1. Архитектура сервера баз данных
- •23.1.1. Архитектура «один к одному» (слайд 3)
- •23.1.2. Многопотоковая односерверная архитектура (слайд 4)
- •23.1.3. Мультисерверная архитектура (слайд 5)
- •23.1.4. Серверные архитектуры с параллельной обработкой запроса
- •23.2. Технологии и средства доступа к удаленным бд
- •23.2.1. Программное обеспечение распределенных приложений
- •23.2.2. Доступ к базам данных в двухзвенных моделях «клиент-сервер»
- •23.3. Технологии межмодульного взаимодействия
- •23.3.1. Спецификация вызова удаленных процедур
- •23.3.2. Мониторы обработки транзакций (слайд 12)
- •23.3.3. Корпоративные серверы приложений (слайд 13)
- •Лекция 24 (db_l24.Ppt). Многомерная и реляционная модель хранилища. Кубы фактов. Схемы «звезда», «снежинка».
- •24.1. Многомерные схемы данных
- •24.2. Запросы к многомерным данным (слайд 12)
- •Лекция 25 (db_l25.Ppt).
- •Транзакции. Понятие целостности базы данных. Условия целостности.
- •Обработка транзакций. Свойства транзакций. Модель ansi/iso.
- •Назначение и использование журнала транзакций. Откат и восстановление.
- •25.1. Модели транзакций
- •Автоматическое выполнение транзакций
- •Управляемое выполнение транзакций
- •25.2. Журнал транзакций (слайд 8)
- •Лекция 26 (db_l26.Ppt). Параллельное выполнение транзакций. Типы конфликтов. Захваты и блокировки.
- •26.1. Параллельное выполнение транзакций
- •Пропавшие обновления
- •Чтение несогласованных данных (слайд 5)
- •26.2. Сериализация транзакций (слайд 7)
- •26.3. Захват и освобождение объекта
- •27.1. Планирование бд
- •27.2. Управление доступом (слайд 6)
- •27.2.1. Тип подключения к sql Server
- •27.2.2. Пользователи базы данных
- •Права доступа (слайд 8)
- •27.2.3. Роли
- •27.3. Управление обработкой.
- •27.3.1. Представления (слайд 11)
- •27.3.2. Хранимые процедуры (слайд 11)
- •27.4. Управление транзакциями
- •27.5. Резервное копирование и восстановление (слайд 14)
- •Лекция 28 (db_l28.Ppt). Средства создания и управления базами данных на примере субд ms sql Server
- •28.1. Создание бд «Сессия»
- •28.2. Резервное копирование базы данных
- •28.3. Восстановление базы данных
- •Лекция 30 (db_l30.Ppt). Средства и технологии разработки приложений баз данных. Компоненты управления доступом к бд (на примере Delphi)
- •30.1. Средства и технологии разработки приложений баз данных
- •30.2. Набор данных
- •30.3. Разработка приложений доступа к внешним источникам данных
- •Лекция 31 (db_l31.Ppt). Доступ к записям, изменение данных, поиск, фильтрация. Параметризованные запросы. Визуальные компоненты для отображения данных из бд
- •31.1. Доступ к записям
- •31.2. Поиск, фильтрация записей
- •31.3. Изменение данных
- •Параметризованные запросы (слайд 8)
- •Визуальные компоненты для отображения данных из базы данных
- •Лекция 32 (db_l32.Ppt). Настройка драйверов и системной информации. Создание таблиц. Работа с запросами. Примеры
- •32.1. Настройка драйверов и системной информации
- •32.2. Создание таблиц
- •32.3. Работа с запросами
19.5. Физическое представление сетевых структур
Так же как и в случае древовидных структур, рассмотренных в предыдущей главе, связи в сетевых структурах можно представить, используя физически последовательное размещение, указатели, кольца. Рассмотрим простую сетевую структуру (слайд 12)
Физически последовательное размещение. Если древовидные структуры можно представить без избыточности с помощью физически последовательного размещения, то для сетевых структур это обычно невозможно. Однако в некоторых случаях может оказаться удобным представить один набор связей типа «исходный-порожденный» путем физически последовательного размещения, а для остальных связей использовать другой метод. Например, можно использовать физически последовательное размещение для представления связей А и С (слайд 13).
В этом примере связи между B и С реализуются с помощью множественных указателей на порожденные записи, указателей на исходные записи и указателей на порожденные и подобные записи. Для множественных указателей на порожденные записи требуются списки указателей переменной длины; для указателей на порожденные и подобные записи необходимы длинные цепочки.
Обычно для представления сетевых структур физически последовательное размещение не применяется.
Использование указателей. Если для реализации сетевых структур используются указатели, то они должны представлять все связи, причем какие-то записи должны называться исходными (например, верхние), а какие-то — порожденными (нижние записи).
На практике может использоваться много различных вариантов конфигураций указателей. На слайдах (слайды 14, 15) представлены структуры, в которых имеются указатели на исходные, порожденные и подобные записи.
Однако если какая-нибудь связь между записями относится к типу «многие ко многим», то названные три метода физического представления сетевых структур оказываются непригодными. Более того, если в простых сетевых структурах на предыдущих рисунках для хранения указателей на исходные записи требовался один или два указателя в каждой записи, то здесь необходимы списки указателей переменной длины.
Основной проблемой, возникающей при организации встроенных списков указателей переменной длины, является сложность их ведения. При обновлении файла должна существовать возможность сокращения и удлинения списков, что обычно приводит к необходимости периодической реорганизации. Реорганизация является сложной задачей, поскольку при перемещении записей должны быть изменены многие указатели.
Эта проблема частично решается, если использовать символические указатели, которые не изменяются при перемещении записей. Однако их применение отражается на механизме адресации и при поиске записей в файле: система затрачивает на поиск записей больше времени, чем при использовании прямых указателей.
19.6. Физическое представление с разделением данных и связей
Рассматриваемые ранее структуры в основном ориентированы на то, чтобы связи между данными хранились вместе с самими данными. Такое объединение реализовалось, например, агрегированием данных (построением сложных понятийных структур и данных) или введением ссылочного аппарата, фиксирующего семантические связи, непосредственно в записи данных.
Табличная форма представления информации является наиболее распространенной и понятной. Кроме того, такие семантически более сложные формы, как деревья и сети, путем введения некоторой избыточности могут быть сведены к табличным. При этом связи между данными также будут представлены в форме двумерных таблиц.
Такой реляционный подход, в основе которого лежит принцип разделения данных и связей, обеспечивает с одной стороны независимость данных, а с другой – более простые способы реализации хранения и обновления.
Рассмотрим пример разделения линейных записей исходной таблицы «Штатное расписание факультета» (слайды 16, 17) на связи и собственно данные.
В разделенном варианте получены три таблицы бинарных отношений для трех вторичных ключей и одна таблица отношений в не инвертированной форме, но упорядоченная по первичному ключу. Каждое значение элемента данных представлено в одном экземпляре и имеет идентификатор (порядковый номер - ключ). Связи элементов данных также выделены в таблицы отдельно.
Такое представление обладает следующими важными свойствами:
каждый элемент таблицы – это один элемент данных;
таблица не содержит одинаковых строк, т.е. содержащих попарно равных значений элементов данных;
столбцы таблицы однородны (т.к. элементы данных каждого столбца имеют общую природу) и могут быть однозначно идентифицированы именованием.
Для более сложных случаев, например, древовидных структур, для устранения зависимости от путей вводятся дополнительные ключевые элементы данных.
Следует отметить, что дублирование некоторых элементов в таблицах является логическим и не обязательно повлечет дублирование на физическом уровне, так как можно воспользоваться указателями.
Однородность реляционных баз данных, построенных на основе бинарных отношений, обеспечивает:
унифицированность средств работы с базой: необходимы только средства для работы с бинарными таблицами;
простоту расширения состава логической записи.
В тоже время для получения ответа по комплексному запросу необходимо обращаться к нескольким таблицам.