
- •Лекция 1 (db_l01.Ppt)
- •1.2. Компоненты банка данных
- •1.3. Цель, задачи и структура курса (Слайд 11)
- •Классификация бд. Фактографические и документальные бд.
- •2.2. Фактографические и документальные бд
- •2.3. Бд оперативной и ретроспективной информации. Хранилища данных
- •Лекция 3 (db_l03.Ppt)
- •3.2. Типология свойств и связей объекта
- •3.3. Многоуровневые модели предметной области
- •3.4. Идентификация объектов и записей
- •Лекция 4 (db_l04.Ppt) Теоретические основы фактографических бд. Реляционная алгебра и реляционное исчисление. Основные операции реляционной алгебры и реляционного исчисления при обработке данных
- •4.1. Основные понятия реляционной модели данных
- •4.2. Основы реляционной алгебры
- •4.3. Реляционное исчисление
- •5.1. Документальные информационные системы, основанные на концепции бд
- •5.2. Теоретико-множественная модель индексирования и поиска (слайд 4)
- •5.3. Линейное описание информационных массивов (слайд 5)
- •5.5. Критерий смыслового соответствия (ксс)
- •5.6. Логическая структура документальной аипс.
- •5.7. Документо-ориентированная база данных Lotus Domino/Notes
- •5.8. Модель полнотекстовых документов
- •Лекция 7 (db_l07)
- •7.2. Типология моделей
- •7.3. Этапы проектирования и объекты моделирования
- •7.4. Подходы к проектированию базы данных
- •7.5. Инфологические модели (системный анализ) предметной области
- •7.6. Даталогические модели
- •7.7. Физические модели
- •7.8. Средства автоматизации проектирования
- •Лекция 8 (db_l08) Инфологическое (концептуальное) моделирование предметной области (ПрО). Анализ предметной области. Синтез концептуальной модели предметной области.
- •8.1. Инфологическое проектирование и семантическая модель
- •8.2. Анализ ПрО - Определение информационных потребностей пользователей
- •8.3. Критерии оценки модели
- •Лекция 9 (db_l09) Модель «сущность-связь». Основные понятия: Сущность, Свойства, Связи. Представление сущностей, свойств, связей
- •9.1. Модель «Сущность-Связь»
- •9.2. Er- диаграмма
- •Лекция 10 (db_l10.Ppt). Методы и языки моделирования. Структурный подход и методика idef. Диаграммы потоков данных Объектно-ориентированная методология. Язык uml
- •10.1. Структурная методология
- •10.1.1. Функциональная модель idef0
- •10.1.2. Метод моделирования idef3
- •10.1.3. Диаграммы потоков данных (Data Flow Diagrams - dfd)
- •10.2. Объектно-ориентированная методология
- •10.2.1. Язык uml
- •10.2.2. Диаграммы uml
- •Лекция 11 (db_l11.Ppt). Даталогические модели (логические модели данных). Иерархические, сетевые, реляционные модели данных. Принципы построения. Преимущества и недостатки.
- •Итак, модель данных – модель логического уровня проектирования бд. Ее можно рассматривать как сочетание трех компонентов (слайд 2):
- •11.3. Сетевая модель данных
- •11.4. Иерархическая модель данных
- •11.5. Преимущества и недостатки моделей (слайд 13)
- •11.6. Документальные системы и интеграция моделей.
- •Лекция 12 (db_l12.Ppt).
- •12.1.2. Управляющий компонент реляционной модели
- •12.1.3. Целостность данных (слайд 5)
- •12.1.4. Правила Кодда
- •12.2. Нормализация.
- •12.2.1. Функциональные зависимости
- •12.2.2. Нормальные формы
- •12.3. Процедура нормализации (слайд 14)
- •12.4. Получение реляционной схемы из er-диаграммы (слайд 17)
- •Лекция 13 (db_l13.Ppt). Восходящее проектирование и нисходящее проектирование. Пример проектирования реляционной бд
- •13.1. Постановка задачи
- •13.2. Нисходящее проектирование
- •13.2.1. Построение инфологической модели
- •13.2.2. Построение реляционной схемы
- •13.2.3. Нормализация таблиц
- •13.2.4. Физическая модель
- •Лекция 14 (db_l14.Ppt).
- •14.1.2. Демонстрация постреляционной модели данных на примере задачи «Сессия»
- •14.1.3. Обзор распространенных постреляционных субд
- •UniVerse
- •Postgres (слайд 5)
- •14.1.4. Достоинства и недостатки постреляционной модели данных (слайд 6)
- •14.2. Объектно-ориентированная модель данных
- •14.2.1. Основы объектно-ориентированного подхода
- •14.2.2. Объектно-ориентированный подход в сфере баз данных
- •14.2.3. Пример структуры оо базы данных
- •14.2.4. Обзор распространенных оо субд (слайд 13)
- •14.2.5. Достоинства и недостатки объектно-ориентированной модели данных
- •14.3. Технологии интеграции распределенных данных на основе xml
- •14.3.1. Технологии xml (слайд 15)
- •14.3.2. Основы xml
- •3) Элементы xml должны быть правильно вложены друг в друга
- •4) Xml-документы должны иметь единственный корневой элемент
- •5) Значения атрибутов всегда должны быть заключены в кавычки
- •14.3.3. Xml и реляционная модель данных
- •14.3.4. Представление связей с помощью xml
- •Лекция 15 (db_l15.Ppt). Управление реляционными базами данных. Языки определения данных и языки манипулирования данными. Способы выражения запросов: процедурный и форм-ориентированный. .
- •15.1. Язык определения данных — ddl (слайд 3)
- •15.2. Язык управления данными — dml
- •15.2.1. Процедурные языки dml
- •15.2.2. Непроцедурные языки dml
- •15.3. Языки 4gl
- •15.3.1. Генераторы форм
- •15.3.2. Генераторы отчетов
- •15.3.3. Генераторы графического представления данных
- •15.3.4. Генераторы приложений
- •15.4. Sql
- •15.5. Использование средств qbe для создания запросов на выборку данных
- •Лекция 16 (db_l16.Ppt). Основы sql. Описание отношений, доменов, ограничений целостности, представлений данных. Реализация операций реляционной алгебры в sql.
- •16.1.1. Инструкции и имена
- •16.1.2. Типы данных
- •16.1.3. Встроенные функции
- •16.1.4. Значения null
- •16.2. Ограничения целостности
- •16.2.2. Внешний ключ таблицы
- •16.2.3. Определение уникального столбца
- •16.2.4. Определение проверочных ограничений
- •16.2.5. Определение значения по умолчанию
- •16.3. Реализация операций реляционной алгебры в sql (слайд 11)
- •Лекция 17 (db_l17.Ppt). Построение баз данных с помощью sql. Манипулирование данными в sql
- •17.1. Построение баз данных с помощью sql
- •17.1.1. Команда создания таблицы – create table
- •17.1.2. Изменение структуры таблицы – команда alter table
- •17.1.3. Удаление таблиц – команда drop table
- •17.2. Управление данными
- •17.2.1. Извлечение данных – команда select
- •Лекция 18 (db_l18.Ppt).
- •18.1.2. Ключевое слово inner
- •18.1.3. Ключевое слово left [outer]
- •18.2. Раздел group by
- •18.3. Раздел compute
- •18.4. Раздел into. Использование команды select...Into
- •18.5. Добавление данных – команда insert
- •18.5.1. Вставка одной строки
- •18.5.2. Вставка результата запроса
- •18.6. Изменение данных – команда update
- •18.7. Удаление данных – команда delete
- •19.1. Организация данных на машинных носителях
- •19.1.2. Организация файлов - способ размещения записей
- •19.1.3. Способы адресации и методы доступа к записям
- •19.2. Схемы организации данных на внешних носителях
- •19.3. Методы включения записей, основанные на резервировании
- •19.4. Физическое представление иерархических структур
- •19.5. Физическое представление сетевых структур
- •19.6. Физическое представление с разделением данных и связей
- •19.7. Архитектура файловой организации баз данных (слайд 18)
- •19.7.1. Файл-ориентированная организация данных
- •19.7.2. Страничная организация данных
- •19.7.3. Модели распределения данных по физическим носителям
- •Время чтения
- •Лекция 20 (db_l20.Ppt). Примеры моделей хранения и организации доступа к бд (dBase, ms sql Server, Oracle)
- •20.1. Физическая структура данных в dBase
- •20.1.1. Структура основного файла базы данных (типа .Dbf)
- •20.1.2. Структура memo-файла (тип .Fpt)
- •20.1.3. Структура индексного файла (тип .Idx)
- •20.2. Физическая структура данных в ms sql Server
- •20.2.1. Страницы размещения (слайд 12)
- •20.2.2. Карты распределения экстентов
- •20.2.3. Карты свободного пространства
- •20.2.4. Карты размещения
- •20.2.5. Страницы данных (слайд 13)
- •20.2.6. Строки данных
- •20.2.7. Текстовые страницы
- •20.2.8. Индексы (слайд 14)
- •20.3. Организация и оптимизация доступа к данным
- •20.4. Физическая структура данных в субд Oracle
- •20.4.1. Сегменты
- •20.4.2. Экстенты
- •20.4.3. Блоки данных
- •20.4.4. Типы индексов (слайд 17)
- •20.4.5. Кластеры
- •Лекция 21 (db_l21.Ppt). Логическая и физическая схема организации пространства в документальных бд. Примеры моделей хранения и организации доступа.
- •21.1. Модель организации данных системы поиска документов stairs
- •21.2. Логическая и физическая структура бд ипс irbis
- •Лекция 22 (db_l22.Ppt).
- •22.2. Архитектура распределенной обработки данных
- •22.2.1. Архитектура «файл-сервер» (слайд 6)
- •20.2.2. Архитектура «выделенный сервер базы данных» (слайд 8)
- •22.2.3. Архитектура «активный сервер баз данных» (слайд 10)
- •22.2.4. Архитектура «сервер приложений» (слайд 12)
- •Лекция 23 (db_l23.Ppt). Схемы распределения данных и запросов. Обработка распределенных данных и запросов. Многопотоковые и многосерверные архитектуры. Типы параллелелизма при обработке запросов.
- •23.1. Архитектура сервера баз данных
- •23.1.1. Архитектура «один к одному» (слайд 3)
- •23.1.2. Многопотоковая односерверная архитектура (слайд 4)
- •23.1.3. Мультисерверная архитектура (слайд 5)
- •23.1.4. Серверные архитектуры с параллельной обработкой запроса
- •23.2. Технологии и средства доступа к удаленным бд
- •23.2.1. Программное обеспечение распределенных приложений
- •23.2.2. Доступ к базам данных в двухзвенных моделях «клиент-сервер»
- •23.3. Технологии межмодульного взаимодействия
- •23.3.1. Спецификация вызова удаленных процедур
- •23.3.2. Мониторы обработки транзакций (слайд 12)
- •23.3.3. Корпоративные серверы приложений (слайд 13)
- •Лекция 24 (db_l24.Ppt). Многомерная и реляционная модель хранилища. Кубы фактов. Схемы «звезда», «снежинка».
- •24.1. Многомерные схемы данных
- •24.2. Запросы к многомерным данным (слайд 12)
- •Лекция 25 (db_l25.Ppt).
- •Транзакции. Понятие целостности базы данных. Условия целостности.
- •Обработка транзакций. Свойства транзакций. Модель ansi/iso.
- •Назначение и использование журнала транзакций. Откат и восстановление.
- •25.1. Модели транзакций
- •Автоматическое выполнение транзакций
- •Управляемое выполнение транзакций
- •25.2. Журнал транзакций (слайд 8)
- •Лекция 26 (db_l26.Ppt). Параллельное выполнение транзакций. Типы конфликтов. Захваты и блокировки.
- •26.1. Параллельное выполнение транзакций
- •Пропавшие обновления
- •Чтение несогласованных данных (слайд 5)
- •26.2. Сериализация транзакций (слайд 7)
- •26.3. Захват и освобождение объекта
- •27.1. Планирование бд
- •27.2. Управление доступом (слайд 6)
- •27.2.1. Тип подключения к sql Server
- •27.2.2. Пользователи базы данных
- •Права доступа (слайд 8)
- •27.2.3. Роли
- •27.3. Управление обработкой.
- •27.3.1. Представления (слайд 11)
- •27.3.2. Хранимые процедуры (слайд 11)
- •27.4. Управление транзакциями
- •27.5. Резервное копирование и восстановление (слайд 14)
- •Лекция 28 (db_l28.Ppt). Средства создания и управления базами данных на примере субд ms sql Server
- •28.1. Создание бд «Сессия»
- •28.2. Резервное копирование базы данных
- •28.3. Восстановление базы данных
- •Лекция 30 (db_l30.Ppt). Средства и технологии разработки приложений баз данных. Компоненты управления доступом к бд (на примере Delphi)
- •30.1. Средства и технологии разработки приложений баз данных
- •30.2. Набор данных
- •30.3. Разработка приложений доступа к внешним источникам данных
- •Лекция 31 (db_l31.Ppt). Доступ к записям, изменение данных, поиск, фильтрация. Параметризованные запросы. Визуальные компоненты для отображения данных из бд
- •31.1. Доступ к записям
- •31.2. Поиск, фильтрация записей
- •31.3. Изменение данных
- •Параметризованные запросы (слайд 8)
- •Визуальные компоненты для отображения данных из базы данных
- •Лекция 32 (db_l32.Ppt). Настройка драйверов и системной информации. Создание таблиц. Работа с запросами. Примеры
- •32.1. Настройка драйверов и системной информации
- •32.2. Создание таблиц
- •32.3. Работа с запросами
16.3. Реализация операций реляционной алгебры в sql (слайд 11)
В языке SQL можно использовать обычные операции над множествами — объединение (union), пересечение (intersection) и разность (difference), — позволяющие комбинировать результаты выполнения двух и более запросов в единую результирующую таблицу.
Все эти операции над множествами графически представлены на слайде. На таблицы, которые могут комбинироваться с помощью операций над множествами, накладываются определенные ограничения. Самое важное из них состоит в том, что таблицы должны быть совместимы по операции — т.е. они должны иметь одну и ту же структуру. Это означает, что таблицы должны иметь одинаковое количество столбцов, причем в соответствующих столбцах должны размещаться данные одного и того же типа и длины. Обязанность убедиться в том, что значения данных соответствующих столбцов принадлежат одному и тому же домену, возлагается на пользователя. Например, мало смысла в том, чтобы объединять столбец с данными о возрасте работников с информацией о количестве комнат в сдаваемых в аренду объектах, хотя оба столбца будут иметь один и тот же тип данных — SMALLINT
Три операции над множествами, предусмотренные стандартом ISO, носят название UNION, INTERSECT и EXCEPT.
При указании в формате конструкции ключевого слова CORRESPONDING BY операция над множествами выполняется для указанных столбцов. Если задано только ключевое слово CORRESPONDING, а конструкция BY отсутствует, операция над множествами выполняется для столбцов, которые являются общими для обеих таблиц. Если указано ключевое слово ALL, результирующая таблица может содержать повторяющиеся строки.
Одни диалекты языка SQL не поддерживают операций INTERSECT и EXCEPT, a в других вместо ключевого слова EXCEPT используется ключевое слово MINUS.
Остальные операции реляционной алгебры реализуются в представленных ниже языковых конструкциях.
Операция декартового произведения отношений реализуется в предложении FROM команды SELECT. Перечисление в предложении FROM нескольких реляционных таблиц через запятую приведет к их перемножению.
Операция естественного соединения реализуется в предложении FROM команды SELECT путем соединения таблиц с помощью ключевых слов INNER JOIN, LEFT JOIN, RIGHT JOIN, OUTER JOIN с указанием столбцов связи.
Операция проекции задается перечислением столбцов таблицы предложения FROM. Для того, чтобы обеспечить уникальность каждой строки результата, используется ключевое слово DISTINCT.
Операция выборки определяется предложением WHERE команды SELECT. Предикат выборки задается в форме логического выражения.
Лекция 17 (db_l17.Ppt). Построение баз данных с помощью sql. Манипулирование данными в sql
В состав языка SQL входят язык описания данных, позволяющий управлять таблицами, и язык манипулирования данными, служащий для управления данными (слайд 2).
17.1. Построение баз данных с помощью sql
17.1.1. Команда создания таблицы – create table
Создание таблицы выполняется при помощи команды CREATE TABLE. Обобщенный синтаксис команды следующий (слайд 3).
Т.е. после задания имени таблицы через запятую в круглых скобках должны быть перечислены все предложения, определяющие отдельные элементы таблицы – столбцы или ограничения целостности:
имя_таблицы — идентификатор создаваемой таблицы, который в общем случае строится из имени базы данных, имени владельца таблицы и имени самой таблицы. При этом комбинация имени таблицы и ее владельца должна быть уникальной в пределах базы данных. Если таблица создается не в текущей базе данных, в ее идентификатор необходимо включить имя базы данных.
определение_столбца — задание имени, типа данных и параметров отдельного столбца таблицы. Названия столбцов должны соответствовать правилам для идентификаторов и быть уникальными в пределах таблицы.
определение_ограничения_таблицы – задание некоторого ограничения целостности на уровне таблицы.
Описание столбцов
Как видно из синтаксиса команды CREATE TABLE, для каждого столбца указывается предложение <определение_столбца>, с помощью которого и задаются свойства столбца. Предложение имеет следующий синтаксис (слайд 3):
Рассмотрим назначение и использование параметров.
Имя_столбца — идентификатор, задающий имя столбца таблицы.
тип_данных — задает тип данных столбца. Если при определении столбца явно не указано ограничение на хранения значений NULL, то будут использованы свойства типа данных, т.е. если выбранный тип данных позволяет хранить значения NULL, то и в столбце можно будет хранить значения NULL. Если же при определении столбца в команде CREATE ТАBLE явно будет разрешено или запрещено хранение значений NULL, то свойства типа данных будут перекрыты установленным на уровне столбца ограничением. Например, если тип данных позволяет хранить значения NULL, а на уровне столбца будет установлен запрет, то попытка вставки значения NULL в столбец закончится ошибкой.
ограничение_столбца — с помощью этого предложения указываются ограничения, которые будут определены для столбца. Синтаксис предложения следующий (слайд 4):
Рассмотрим назначение параметров.
CONSTRAINT — необязательное ключевое слово, после которого указывается название ограничения на значения столбца (имя_ограничения). Имена ограничений должны быть уникальны в пределах базы данных.
DEFAULT — задает значение по умолчанию для столбца. Это значение будет использовано при вставке строки, если для столбца явно не указано никакое значение.
NULL|NOT NULL — ключевые слова, разрешающие (NULL) или запрещающие (NOT NULL) хранение в столбце значений NULL. Если для столбца не задано значение по умолчанию, то при вставке строки с неизвестным значением для столбца будет предприниматься попытка вставки в столбец значения NULL. Если при этом для столбца указано ограничение NOT NULL, то попытка вставки строки будет отклонена, и пользователь получит соответствующее сообщение об ошибке.
PRIMARY KEY — определение первичного ключа на уровне одного столбца (т.е. первичный ключ будет состоять только из значений одного столбца). Если необходимо сформировать первичный ключ на базе двух и более столбцов, то такое ограничение целостности должно быть задано на уровне таблицы. При этом следует помнить, что для каждой таблицы может быть создан только один первичный ключ.
UNIQUE — указание на создание для столбца ограничения целостности UNIQUE, что позволит гарантировать уникальность каждого отдельного значения в столбце в пределах этого столбца. В таблице может быть создано несколько ограничений целостности UNIQUE.
FOREIGN KEY ... REFERENCES — указание на то, что столбец будет служить внешним ключом для таблицы, имя которой задается с помощью параметра <имя_главной_таблицы>.
(имя_столбца [,...,n]) — столбец или список перечисленных через запятую столбцов главной таблицы, входящих в ограничение FOREIGN KEY. При этом столбцы, входящие во внешний ключ, могут ссылаться только на столбцы первичного ключа или столбцы с ограничением UNIQUE таблицы.
ON DELETE {CASCADE | NO ACTION} — эти ключевые слова определяют действия, предпринимаемые при удалении строки из главной таблицы. Если указано ключевое слово CASCADE, то при удалении строки из главной (родительской) таблицы строка в зависимой таблице также будет удалена. При указании ключевого слова NO ACTION в подобном случае будет выдана ошибка. Значением по умолчанию является вариант NO ACTION.
ON UPDATE {CASCADE | NO ACTION} — эти ключевые слова определяют действия, предпринимаемые при модификации строки главной таблицы. Если указано ключевое слово CASCADE, то при модификации строки из главной (родительской) таблицы строка в зависимой таблице также будет модифицирована. При использовании ключевого слова NO ACTION в подобном случае будет выдана ошибка. Значением по умолчанию является вариант NO ACTION.
CHECK — ограничение целостности, инициирующее контроль вводимых в столбец (или столбцы) значений.
логическое_выражение — логическое выражение, используемое для ограничения CHECK.
Ограничения на уровне таблицы
Синтаксис команды CREATE TABLE предусматривает использование предложения <ограничение_таблицы>, с помощью которого определяются ограничения целостности на уровне таблицы. Синтаксис предложения следующий (слайд 5).
Назначение параметров совпадает с назначением аналогичных параметров предложения <ограничение_столбца. Тем не менее, в предложении <ограничение_таблицы> имеются некоторые новые параметры:
имя_колонки — столбец (или список столбцов), на которые необходимо наложить какие-либо ограничения целостности.
[ASC | DESC] — метод упорядочивания данных в индексе. Индекс создается при указании ключевых слов PRIMARY KEY, UNIQUE. При указании значения ASC данные в индексе будут упорядочены по возрастанию, при указании значения DESC — по убыванию. По умолчанию используется значение ASC.
Примеры создания таблиц
В качестве примера рассмотрим инструкции создания таблиц базы данных «Сессия»:
Таблица «Студенты» состоит из следующих столбцов:
ID_Студент – тип данных INTEGER, уникальный ключ;
Фамилия – тип данных CHAR, длина 30;
Имя - тип данных CHAR, длина 15;
Отчество - тип данных CHAR, длина 20;
Номер_группы - тип данных CHAR, длина 6;
Адрес - тип данных CHAR, длина 30;
Телефон - тип данных CHAR, длина 8.
Создание таблицы выполнялось с помощью следующей команды (слайд 6).
На все столбцы таблицы, кроме столбцов Адрес и Телефон, наложены ограничения NOT NULL, запрещающие ввод строки при неопределенном значении столбца.
Для создания таблицы «Дисциплины» была использована команда (слайд 7).
Таблица содержит 2 столбца (ID_Дисциплина, Наименование).
На столбцы ID_Дисциплина, Наименование наложены ограничения NOT NULL, запрещающие ввод строки при неопределенном значении столбца.
Столбец ID_Дисциплина объявлен первичным ключом, а на значения, вводимые в столбец Наименование, наложено условие уникальности.
Таблица «Учебный_план» включает в себя следующие столбцы:
ID_План – тип данных INTEGER, столбец уникального ключа;
ID_Дисциплина – тип данных INTEGER;
Семестр - тип данных INTEGER;
Количество_часов - тип данных INTEGER;
ID_Преподаватель - тип данных INTEGER.
Создание таблицы выполнялось с помощью следующей команды (слайд 8).
Для значений столбца Семестр сформулировано логическое выражение, разрешающее вводить только значения от 1 до 10.
Таблица «Сводная_ведомость» состоит из следующих столбцов:
ID_Студент – тип данных INTEGER, столбец уникального ключа;
ID_План – тип данных INTEGER, столбец уникального ключа;
Оценка - тип данных INTEGER;
Дата_сдачи - тип данных DATETIME;
ID_Преподаватель - тип данных INTEGER.
Создание таблицы выполнялось с помощью следующей команды (слайд 9).
На все столбцы таблицы наложены ограничения NOT NULL, запрещающие ввод строки при неопределенном значении столбца.
Для значений столбца Оценка сформулировано логическое выражение, разрешающее вводить только значения от 0 до 5: 0 – незачет, 1 – зачет, 2 – неудовлетворительно, 3 – удовлетворительно, 4 – хорошо, 5 – отлично.
И, наконец, перечислим столбцы «Кадровый_состав»:
ID_Преподаватель – тип данных INTEGER, уникальный ключ;
Фамилия – тип данных CHAR, длина 30;
Имя - тип данных CHAR, длина 15;
Отчество - тип данных CHAR, длина 20;
Должность - тип данных CHAR, длина 20;
Кафедра - тип данных CHAR, длина 3;
Адрес - тип данных CHAR, длина 30;
Телефон - тип данных CHAR, длина 8.
Создание таблицы выполнялось с помощью следующей команды (слайд 10).
На все столбцы таблицы, кроме столбцов Адрес и Телефон, наложены ограничения NOT NULL, запрещающие ввод строки при неопределенном значении столбца.
Для таблиц «Учебный_план» и «Сводная_ведомость» должны быть построены внешние ключи, связывающие таблицы базы данных «Сессия»:
FK_Дисциплина – внешний ключ, связывающий таблицы «Учебный_план» и «Дисциплины» по столбцу ID_Дисциплина;
FK_Кадровый_состав – внешний ключ, связывающий таблицы «Учебный_план» и «Кадровый_состав» по столбцу ID_Преподаватель;
FK_Студент – внешний ключ, связывающий таблицы «Сводная_ведомость» и «Студенты» по столбцу ID_Студент;
FK_План – внешний ключ, связывающий таблицы «Сводная_ведомость» и «Учебный_план» по столбцу ID_План.
Добавление внешних ключей в таблицы рассмотрим далее при обсуждении возможностей команды ALTER TABLE.