
- •1.2 6.2 11.2 Импульсно-дуговая сварка плавящимся электродом. Технологические особенности. Область применения.
- •18.1 Основы способа сварки плавящимся электродом в защитном газе. Схема процесса сварки.
- •19.1 Сварка плавящимся электродом в защитном газе. Автоматическая и механизированная сварка.
- •22.1 Сварка плавящимся электродом в защитном газе. Защитные газы – характеристики, подача в зону сварки.
- •23.1 Сварка плавящимся электродом в защитном газе. Влияние газов на технологический процесс сварки.
- •24.1 Сварка плавящимся электродом в защитном газе. Параметры режима сварки.
- •3.2 7.2 12.2 Основы способа сварки неплавящимся электродом. Схема процесса сварки.
- •4.2 9.2 14.2 Неплавящиеся электроды. Типы. Стойкость неплавящихся электродов.
- •10.2 13.2 15.2 24.2 Сварка неплавящимся электродом. Защитные газы, основные характеристики.
- •16.2 18.2 Сварка неплавящимся электродом. Параметры режима сварки. Формирование шва.
- •17.2 21.2 Сварка неплавящимся электродом. Импульсно-дуговая сварка. Технологические особенности сварки.
- •19.2 Сварка неплавящимся электродом. Область применения. Оборудование поста аргонодуговой сварки.
- •20.2 22.2 23.2 Сварка неплавящимся электродом. Влияние защитных газов на энергетические свойства дуги и защиту зоны сварки.
- •2.2 5.2 8.2 Оборудование поста механизированной сварки в защитном газе
- •1.3 2.3 3.3 Основы способа электрошлаковой сварки. Сущность способа сварки. Выделение тепловой мощности в шлаковой ванне. Расплавление присадочного и основного металлов.
- •4.2 Разновидности электрошлаковой сварки
- •5.3 Электрошлаковая сварка. Параметры режима сварки и их влияние на формирование шва и образование сварного соединения
- •6.3 Электрошлаковая сварка. Технологические особенности сварки. Область рационального применения.
- •5.1 23.3 Основы способа ручной дуговой сварки покрытым электродом. Схема процесса
- •7.1 Ручная дуговая сварка покрытым электродом. Технологические особенности сварки.
- •1 Подготовка поверхности металла под сварку и требования к сборке металлических деталей перед сваркой
- •8.1 Ручная дуговая сварка покрытым электродом. Техника сварки.
- •9.1 Ручная дуговая сварка покрытым электродом. Сварочные материалы. Режимы сварки.
- •11.1 Ручная дуговая сварка покрытым электродом. Оборудование поста ручной дуговой сварки. Область применения.
- •7.3 Основы способа газовой сварки. Схема процесса газовой сварки. Левый и правый способы сварки.
- •Газовая сварка.
16.2 18.2 Сварка неплавящимся электродом. Параметры режима сварки. Формирование шва.
При сварке многопроходных швов с V- или Х-образной разделкой кромок первый проход часто выполняют вручную или механизированно без присадочного металла на весу. Разделку заполняют при последующих проходах с присадочным металлом. Для формирования корня шва можно использовать медные или стальные съемные подкладки, флюсовую подушку. В некоторых случаях возможно применение и остающихся подкладок. При сварке активных металлов необходимо не только получить хороший провар в корне шва, но и обеспечить защиту от воздуха с обратной стороны расплавленного и нагретого металлов. Это достигается использованием медных или других подкладок с канавками, в которые подается защитный инертный газ (рис. 9). Эта же цель в некоторых случаях достигается при использовании флюсовых подушек.
При сварке труб или закрытых сосудов газ пропускают внутрь сосуда. Инертные газы, увеличивая поверхностное натяжение расплавленного металла, улучшают формирование корня шва. Поэтому их поддув используют при сварке сталей на весу. При сварке на весу, особенно без присадочного металла, следует тщательно поддерживать требуемую величину зазора между кромками.
Рис.9 Подкладки для защиты от воздуха обратной стороны шва при сварке:
а) односторонней, б) двусторонней. 1 –медная подкладка, 2 –защитный газ, 3 –свариваемый металл, 4 –зажимное приспособление.
17.2 21.2 Сварка неплавящимся электродом. Импульсно-дуговая сварка. Технологические особенности сварки.
Для сварки тонколистового металла находит применение импульсная дуга. Основной металл расплавляется дугой, горящей периодически отдельными импульсами постоянного тока (рис. 6, а) с определенными интервалами во времени. При большом перерыве в горении дуги (tп) дуговой промежуток деионизируется, что приводит к затруднению в повторном возбуждении дуги. Для устранения этого недостатка постоянно поддерживается вторая, обычно маломощная дежурная дуга от самостоятельного источника питания. На эту дугу и накладывается основная импульсная дуга. Дежурная дуга, постоянно поддерживая термоэлектронную эмиссию с электрода, обеспечивает стабильное возникновение основной сварочной дуги.
Рис.
6. Изменение сварочного тока и напряжения
при импульсной сварке вольфрамовым
электродом (а);I св — сварочный ток; I деж
— ток дежурной дуги; ( tп - время паузы;
tсв — время сварки (tсв + tп = t ц — время
цикла); швы в плоскости (б) и продольном
сечении (в)
Шов в этом случае состоит из отдельных перекрывающих друг друга точек (рис. 6, б и в). Величина перекрытия зависит от металла и его толщины, силы сварочного тока и тока дежурной дуги, скорости сварки и т. д. С увеличением силы тока и длительности его импульса ширина шва и глубина проплавления увеличиваются (рис. 7). Размеры шва в большей степени зависят от силы тока, чем от длительности его импульса. Благоприятная форма отдельных точек, близкая к кругу, уменьшает возможность вытекания расплавленного металла из сварочной ванны (прожога). Поэтому сварку легко выполнять на весу без подкладок при хорошем качестве во всех пространственных положениях.
Представляет определенный интерес использование внешнего магнитного поля для отклонения или перемещения непрерывно горящей дуги. Внешнее переменное или постоянное магнитное поле, параллельное или перпендикулярное к направлению сварки, создается П-образными электромагнитами. При использовании постоянного магнитного поля дугу можно отклонить в любую сторону относительно направления сварки. При от-
клонении дуги в сторону направления сварки (магнитное поле также параллельно направлению сварки) наблюдается такой же эффект, как и при сварке наклонным электродом — углом вперед. В этом случае уменьшается глубина проплавления. При отклонении дуги в обратном направлении наблюдается увеличение глубины проплавления, как при сварке с наклоном электрода углом назад.
При переменном внешнем магнитном поле дуга колеблется с частотой внешнего магнитного поля. В результате изменяются условия ввода теплоты в изделие и, в частности, ее распределение по поверхности. При колебании дуги поперек направления сварки увеличивается ширина шва и уменьшается глубина проплавления. Это позволяет сваривать тонколистовой металл. Удобно использовать этот способ для сварки разнородных металлов (например, меди и стали и др.) небольшой толщины при отбортовке кромок.
Колебания, сообщаемые расплавленному металлу сварочной ванны, изменяют характер его кристаллизации и способствуют измельчению зерна. В результате улучшаются свойства наплавленного металла. Поэтому этот способ используют при сварке металлов, характеризующихся крупнозернистым строением металла шва, таких как алюминий, медь, титан и их сплавы. Имеется положительный опыт использования способа и при сварке высокопрочных сталей и сплавов.