
- •1.2 6.2 11.2 Импульсно-дуговая сварка плавящимся электродом. Технологические особенности. Область применения.
- •18.1 Основы способа сварки плавящимся электродом в защитном газе. Схема процесса сварки.
- •19.1 Сварка плавящимся электродом в защитном газе. Автоматическая и механизированная сварка.
- •22.1 Сварка плавящимся электродом в защитном газе. Защитные газы – характеристики, подача в зону сварки.
- •23.1 Сварка плавящимся электродом в защитном газе. Влияние газов на технологический процесс сварки.
- •24.1 Сварка плавящимся электродом в защитном газе. Параметры режима сварки.
- •3.2 7.2 12.2 Основы способа сварки неплавящимся электродом. Схема процесса сварки.
- •4.2 9.2 14.2 Неплавящиеся электроды. Типы. Стойкость неплавящихся электродов.
- •10.2 13.2 15.2 24.2 Сварка неплавящимся электродом. Защитные газы, основные характеристики.
- •16.2 18.2 Сварка неплавящимся электродом. Параметры режима сварки. Формирование шва.
- •17.2 21.2 Сварка неплавящимся электродом. Импульсно-дуговая сварка. Технологические особенности сварки.
- •19.2 Сварка неплавящимся электродом. Область применения. Оборудование поста аргонодуговой сварки.
- •20.2 22.2 23.2 Сварка неплавящимся электродом. Влияние защитных газов на энергетические свойства дуги и защиту зоны сварки.
- •2.2 5.2 8.2 Оборудование поста механизированной сварки в защитном газе
- •1.3 2.3 3.3 Основы способа электрошлаковой сварки. Сущность способа сварки. Выделение тепловой мощности в шлаковой ванне. Расплавление присадочного и основного металлов.
- •4.2 Разновидности электрошлаковой сварки
- •5.3 Электрошлаковая сварка. Параметры режима сварки и их влияние на формирование шва и образование сварного соединения
- •6.3 Электрошлаковая сварка. Технологические особенности сварки. Область рационального применения.
- •5.1 23.3 Основы способа ручной дуговой сварки покрытым электродом. Схема процесса
- •7.1 Ручная дуговая сварка покрытым электродом. Технологические особенности сварки.
- •1 Подготовка поверхности металла под сварку и требования к сборке металлических деталей перед сваркой
- •8.1 Ручная дуговая сварка покрытым электродом. Техника сварки.
- •9.1 Ручная дуговая сварка покрытым электродом. Сварочные материалы. Режимы сварки.
- •11.1 Ручная дуговая сварка покрытым электродом. Оборудование поста ручной дуговой сварки. Область применения.
- •7.3 Основы способа газовой сварки. Схема процесса газовой сварки. Левый и правый способы сварки.
- •Газовая сварка.
2.2 5.2 8.2 Оборудование поста механизированной сварки в защитном газе
Для сварки тугоплавких и активных металлов, часто выполняемой вольфрамовым электродом, для улучшения защиты нагретого и расплавленного металлов от возможного подсоса в зону сварки воздуха используют специальные камеры (сварка в контролируемой атмосфере). Небольшие детали помещают в специальные камеры, откачивают воздух до создания вакуума до 10-4 мм рт. ст. и заполняют инертным газом высокой чистоты. Сварку выполняют вручную (рис. 3) или автоматически с дистанционным управлением.
Рис. 3. Камера с контролируемой атмосферой для ручной дуговой сварки вольфрамовым электродом:
1 — корпус камеры; 2 — смотровое окно; 3 — рабочие рукава-перчатки сварщика, соединенные с корпусом камеры; 4 — горелка
Для сварки в контролируемой атмосфере крупногабаритных изделий находят применение камеры объемом до 450 м3. Сварщик находится внутри камеры в специальном скафандре с индивидуальной системой дыхания. Инертный газ, заполняющий камеру, регулярно очищается и частично заменяется. Для доступа сварщика в камеру и подачи необходимых материалов имеется система шлюзов. При крупногабаритных изделиях используют переносные мягкие камеры из полиэтилена, устанавливаемые на поверхности изделия. После их продувки и заполнения защитным газом сварку выполняют вручную или механизированно.
1.3 2.3 3.3 Основы способа электрошлаковой сварки. Сущность способа сварки. Выделение тепловой мощности в шлаковой ванне. Расплавление присадочного и основного металлов.
Этот способ используют в для соединения металлов повышенной толщины: стали и чугуна различного состава, меди, алюминия, титана и их сплавов. К преимуществам способа относится возможность сварки за один проход металла практически любой толщины, что не требует удаления шлака и соответствующей настройки сварочной установки перед сваркой последующего прохода, как при других способах сварки. При этом сварку выполняют без снятия фасок на кромках. Для сварки можно использовать один или несколько проволочных электродов или электродов другого увеличенного сечения. В результате этого достигается высокая производительность и экономичность процесса, повышающиеся с ростом толщины свариваемого металла.
К недостаткам способа следует отнести то, что электрошлаковая сварка технически возможна при толщине металла более 16 мм и за редкими исключениями экономически выгодна при сварке металла толщиной более 40 мм. Способ позволяет сваривать только вертикальные швы. При сварке некоторых металлов образование в металле шва и околошовной зоны неблагоприятных структур требует последующей термообработки для получения необходимых свойств сварного соединения.
Расплавленные флюсы образуют шлаки, которые являются проводниками электрического тока. При этом в объеме расплавленного шлака при протекании сварочного тока выделяется теплота. Этот принцип и лежит в основе электрошлаковой сварки. Электрод и основной металл связаны электрически через расплавленный шлак (шлаковая ванна). Выделяющаяся в шлаковой ванне теплота перегревает его выше температуры плавления основного и электродного металлов. В результате металл электрода и кромки основного металла оплавляются и ввиду большей плотности металла, чем шлака, стекают на дно расплава, образуя ванну расплав ленного металла (металлическую ванну).
Электродный металл в виде отдельных капель, проходя через жидкий шлак, взаимодействует с ним, изменяя при этом свой состав. Шлаковая ванна, находясь над поверхностью расплавленного металла, препятствует его взаимодействию с воздухом. При правильно подобранной скорости подачи электрода зазор между торцом электрода и поверхностью металлической ванны остается постоянным.
Свариваемый металл, шлаковая и металлическая ванны удерживаются от вытекания обычно специальными формирующими устройствами — подвижными или неподвижными медными ползунами, охлаждаемыми водой, или остающимися пластинами. Верхняя кромка ползуна располагается несколько выше зеркала шлаковой ванны. Кристаллизующийся в нижней части металлической ванны расплавленный металл образует шов. Шлаковая ванна, находясь над поверхностью металлической ванны, соприкасаясь с охлаждаемыми ползунами, образует на них тонкую шлаковую корку, исключая тем самым непосредственный контакт расплавленного металла с поверхностью охлаждаемого ползуна и предупреждая образование в металле шва кристаллизационных трещин.
Расход флюса при этом способе сварки невелик и обычно не превышает 5% массы наплавленного металла. Ввиду малого количества шлака легирование наплавленного металла происходит в основном за счет электродной проволоки. Доля основного металла в шве может быть снижена до 10—20%. Вертикальное положение металлической ванны, повышенная температура ее верхней части и значительное время пребывания металла в расплавленном состоянии способствуют улучшению условий удаления газов и неметаллических включений из металла шва. По сравнению со сварочной дугой шлаковая ванна — менее концентрированный источник теплоты. Поэтому термический цикл электрошлаковой сварки характеризуется медленным нагревом и охлаждением основного металла. Отклонение положения оси свариваемого шва от вертикали возможно не более чем на 15° в плоскости листов и на 30—45° от горизонтали.
Выделение теплоты в шлаковой ванне происходит главным образом в области электрода, максимальная толщина основного металла, свариваемого с использованием одной электродной проволоки, обычно ограничена 60 мм. При сварке металла большей толщины электроду в зазоре между кромками сообщают возвратно-поступательное движение (до 150 мм) или используют несколько неподвижных или перемещающихся электродов. В этом случае появляется возможность сварки металла большой толщины.