
- •Новые информационные технологии
- •Часть 3. Основы математики и математическое моделирование Учебное пособие
- •Введение
- •Глава 1. Основы компьютерной математики
- •1.1. Математика и ее средства
- •1.1.1. Аксиоматический метод и структуры математики
- •1.1.2. Компьютерная математика как часть математики
- •1.1.3. Классификация средств компьютерной математики
- •1.1.4. Структура систем компьютерной математики
- •1.1.5. Обзор систем компьютерной математики
- •1.2. Система компьютерной математикиMathcad
- •1.2.1. Состав системы Mathcad и ее запуск
- •1.2.2. Основы работы с системой Mathcad 2001
- •1.2.3. Работа с текстовым редактором
- •1.2.4. Работа с формульным редактором
- •1.2.5. Операции вывода и присваивания
- •1.2.6. Шаблоны математических операторов и символов
- •1.2.7. Ошибки и прерывание вычислений
- •1.3. Простые типы данных
- •1.3.1. Числовые данные
- •1.3.2. Вещественные числа и их форматы
- •1.3.3. Комплексные числа
- •1.3.4. Строковые данные
- •1.3.5. Символьные данные и выражения
- •1.4. Сложные типы данных
- •1.4.1. Множества и подмножества
- •1.4.2. Массивы
- •1.4.3. Векторы и матрицы
- •1.5. Константы, переменные, операторы и функции
- •1.5.1. Числовые константы
- •1.5.2. Строковые константы
- •1.5.3. Переменные
- •1.5.4. Операторы
- •1.5.5. Выражения и функции
- •1.6. Основы графической визуализации вычислений
- •1.6.1. Понятия об основных геометрических объектах
- •1.6.2. Построение графиков функций одной переменной
- •1.6.3. Построение графиков поверхностей
- •1.7. Средства программирования в системеMathcad
- •1.7.1. Задание операторов пользователя
- •1.7.2. Задание программных модулей
- •1.7.3. Особенности применения программных модулей
- •Методические указания
- •2.1.2. Вычисление произведений
- •2.1.3. Вычисление пределов
- •2.3. Вычисление производных и интегралов
- •2.3.1. Определение производной и полного дифференциала
- •2.3.2. Вычисление производных
- •2.3.3. Определение интегралов
- •2.3.4. Вычисление интегралов
- •2.4. Решение уравнений и систем уравнений
- •2.4.1. Простое линейное уравнение и его решение
- •2.4.2. Решение систем линейных уравнений
- •2.4.5. Поиск всех корней степенного многочлена()
- •2.4.6. Решение систем нелинейных уравнений()
- •2.4.7. Реализация итерационных вычислений
- •2.5. Решение дифференциальных уравнений()
- •2.5.1. Основные понятия о дифференциальных уравнениях()
- •2.5.2. Решение систем оду()
- •2.5.3. Решение оду с помощью функции odesolve()
- •2.5.4. Решение жестких систем оду()
- •2.6. Решение задач оптимизации и линейного программирования
- •2.6.1. Основные понятия оптимизации
- •2.6.2. Пример оптимизации раскроя железного листа
- •2.6.3. Поиск минимума тестовой функции Розенброка
- •2.6.4. Функции maximize и minimize системы Mathcad
- •2.7. Разложение функций в ряды
- •2.7.1. Определение рядов Тейлора и Маклорена
- •2.7.2. Разложение в ряд Тейлора в системе Mathcad
- •2.7.3. Ряды Фурье()
- •2.7.4. Быстрые прямое и обратное преобразования Фурье()
- •2.7.5. Примеры преобразований Фурье()
- •2.7.6. Альтернативные преобразования Фурье()
- •2.8. Табличная интерполяция и аппроксимация
- •2.8.1. Теоретические основы интерполяции и экстраполяции
- •2.8.2. Интерполяция и аппроксимация по общей формуле Лагранжа
- •2.8.3. Полиномиальная интерполяция и аппроксимация
- •2.8.4. Кусочно-линейная и сплайновая аппроксимации в Mathcad
- •2.9. Статистическая обработка данных
- •2.9.1.Эксперименты, события и другие понятия статистики
- •2.9.2.Решение задач комбинаторики
- •2.9.3. Дискретные и непрерывные случайные величины
- •2.9.4. Законы распределения и статистические функции Mathcad
- •2.9.5. Регрессия и метод наименьших квадратов
- •2.9.6. Выполнение линейной регрессии в среде Mathcad
- •2.9.7. Полиномиальная регрессия в Mathcad
- •2.9.8. Проведение нелинейной регрессии()
- •2.9.9. Экстраполяция и предсказание
- •2.9.10. Сглаживание данных
- •Методические указания
- •10 Главных вопросов
- •Глава 3. Основы математического моделирования
- •3.1. Основные понятия моделирования
- •3.2. Основные виды моделей и их свойства
- •3.2.1. Основные виды моделей
- •3.2.2. Основные свойства моделей
- •3.3. Цели, принципы и технология моделирования
- •3.3.1. Цели моделирования
- •3.3.2. Основные принципы моделирования
- •3.3.3. Технология моделирования
- •3.3.4. Основные методы решения задач моделирования
- •Оценка обусловленности вычислительной задачи – еще одно обязательное требование при выборе метода решения и построении математической модели.
- •3.3.5. Контроль правильности модели
- •3.4. Задачи моделирования полета камня
- •3.4.1. Постановка задачи моделирования
- •3.4.2. Концептуальная формулировка задачи
- •3.4.3. Построение математической модели
- •3.4.4. Выбор метода решения
- •3.4.5. Программная реализация модели на эвм
- •3.4.6. Проверка адекватности модели
- •3.4.7. Анализ результатов моделирования
- •Методические указания
- •10 Главных вопросов
- •Глава 4. Практика математического моделирования
- •4.1. Моделирование процессов на основе известных формул
- •4.1.1. Моделирование изменения параметров атмосферы
- •4.1.2. Моделирование закона Мура
- •4.1.3. Моделирование преодоления самолетом звукового барьера
- •4.2. Моделирование на основе конечно-разностных методов
- •4.2.1. Моделирование Броуновского движения частиц
- •4.2.2. Моделирование диффузии
- •4.2.3. Моделирование торможения автомобиля()
- •4.2.4. Моделирование падения парашютиста()
- •4.2.5. Моделирование генератора на туннельном диоде()
- •4.2.6. Моделирование развития и угасания эпидемии
- •4.3. Моделирование колебательных систем
- •4.3.1. Анализ линейной колебательной системы
- •4.3.2. Анализ нелинейной колебательной системы Ван дер Поля
- •4.3.3. Моделирование системы Дафинга с внешним воздействием
- •4.3.4. Хаос и моделирование аттрактора Лоренца()
- •4.4. Моделирование рассеивания альфа-частиц()
- •4.5. Моделирование биологических и экономических систем
- •4.5.1. Модель системы «хищник-жертва» Лотки-Вольтерра
- •4.5.2. Модель системы «хищник-жертва» с логистической поправкой
- •4.5.3. Модель системы «хищник-жертва» Холлинга-Тэннера
- •4.5.4. Моделирование замкнутой экономической системы
- •4.6. Моделирование на основе линейного программирования
- •4.6.1.Оптимальные экономико-математические модели
- •4.6.2. Решение задач максимизации объема продукции
- •4.6.3. Решение задач минимизации ресурсов
- •4.6.4. Решение транспортной задачи
- •4.6.5. Задачи целочисленного программирования с булевыми переменными
- •4.7. Сетевые модели в оптимизации управленческих решений
- •4.7.1. Задача поиска кратчайшего пути
- •4.7.2. Задача о распределении потоков в сетях
- •4.8. Обработка и моделирование сигналов и изображений
- •4.8.1. Основы спектрального метода моделирования сигналов
- •4.8.2. Спектральное моделирование на основе точных формул интегрирования()
- •4.8.3. Улучшенное спектральное моделирование дискретных сигналов()
- •4.8.4. Вейвлеты - новый базис представления сигналов()
- •4.8.5. Вейвлет-преобразования()
- •4.8.6. Примеры вейвлет-обработки сигнала - временного ряда()
- •4.8.7. Анализ сигналов по вейвлет-спектрограммам
- •4.9. Обработка изображений
- •4.9.1. Средства обработки изображений
- •4.9.2. Обработка монохромных изображений
- •4.9.3. Обработка цветных изображений
- •4.9.4. Функции для работы с файлами и матрицами рисунков
- •4.9.5. Вейвлет-компрессия рисунков в пакете Wavelet Extension Pack
- •4.10.1. Подготовка к работе с матричной лабораторией matlab
- •4.10.2. Имитационное моделирование и расширение Simulink
- •Методические указания
- •10 Главных вопросов
- •Список литературы
- •Глава 1. Основы компьютерной математики 4
- •Глава 2. Основы математических вычислений 50
- •Глава 3. Основы математического моделирования 105
- •Глава 4. Практика математического моделирования 121
2.6. Решение задач оптимизации и линейного программирования
2.6.1. Основные понятия оптимизации
Простейшими задачами оптимизации являются задачи на поиск экстремумов (минимумов и максимумов) функции одной переменной F(x). Если непрерывная функция F(x) имеет всего один экстремум, то задача его поиска оказывается достаточно простой - поскольку в точке экстремума производная F'(x)=0, то поиск экстремума сводится к решению указанного уравнения.
Однако если экстремумов несколько, то решение задачи резко усложняется. Самый высокий пик функции в этом случае именуют глобальным максимумом, а самый глубокий минимум - глобальным минимумом. Другие экстремумы называют локальными. Поиск глобальных экстремумов встречается только в высококлассных и сложных СКМ, тогда как поиск локальных экстремумов вблизи заданной точки или в заданной окрестности изменения аргумента F(x), есть практически во всех системах.
В практике серьезных расчетов основной интерес представляет оптимизация функций многих (N) переменных F(x, y, z,...). Такая функция представляет собой (N+1)- мерную поверхность. Большое число задач в науке и в технике сводится к решению задачи на поиск максимума или минимума функции многих переменных - проектных параметров, обычно называемой целевой функцией.
Обычно в СКМ реализуются несколько методов поиска экстремумов, и они применяются в зависимости от особенностей анализируемой функции и успеха применения некоторых начальных методов. В Mathcad для решения данной задачи используются функции minimize, maximize.
В серьезных СКМ возможен ввод ограничивающих условий и при решении задач оптимизации нелинейных целевых функций. Более того, их встроенные или библиотечные функции оптимизации, как правило, решают как задачи оптимизации нелинейных функций, так и задачи линейного программирования.
2.6.2. Пример оптимизации раскроя железного листа
Рассмотрим практически важную для многих (даже гуманитариев) задачу, представленную приведенным ниже примером.
Пример 2.29. Вы решили установить бак с водой на своем садовом участке, например для бани или полива рассады. Для его изготовления вы купили лист железа в виде прямоугольника с длиной L и шириной W. Ящик делается путем отгиба полоски листа на расстоянии X от края - это будущая высота ящика. Как выбрать расстояние отгиба X, чтобы получить ящик заданного V0 или еще лучше - максимального VM объема? Рис. 2.6 поясняет решение этой актуальной задачи. Как показывает график целевой функции V(X)-V0, задача имеет три решения, но одно из них физически нереально - отгиб превышает размеры листа. Это, кстати, наглядный пример того, что не все математически верные решения годятся для практики! Два других решения реальны, но и они предостерегают вас от поспешных действий. При малом отгибе X ящик получается плоским и малого объема. При большом отгибе он получается высоким, но площадь дна выходит малой, так что и объем тоже будет малым. Нас интересует нечто среднее.
Все
необходимые вычисления представлены
в документе на рис. 2.6. Вначале (случай
1) вычисляется значениеX
для получения ящика заданного объема
V0.
Затем (случай 2) вычисляется X=XM
для получения ящика максимального
объема. При этом вновь для поиска
максимума целевой функции использована
функция Mathcad
Minerr.
Рис. 2.6. Решение задачи оптимизации раскроя листа