- •16.Основные правила дифференцирования
- •17.Производные сложных функций.Производные высших порядков
- •21.Понятие об экстремуме функции.Признаки существования экстремума (необходимый и достаточный).
- •Достаточное условие экстремума
- •1) Первое достаточное условие:
- •2) Второе достаточное условие
- •3) Третье достаточное условие
- •Абсолютный экстремум
21.Понятие об экстремуме функции.Признаки существования экстремума (необходимый и достаточный).
Признаки локального возрастания и убывания функции. Одна из основных задач исследования функции — это нахождение промежутков ее возрастания и убывания. Такое исследование легко провести с помощью производной. Сформулируем соответствующие утверждения. Достаточный признак возрастания функции. Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I. Достаточный признак убывания функции. Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I. Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х1 и x2 из интервала. Пусть x1<x2. По формуле Лагранжа существует число с∈(х1, x2), такое, что
(1)
Число с принадлежит интервалу I, так как точки х1 и x2 принадлежат I. Если f'(x)>0 для х∈I то f’(с)>0, и поэтому F(x1)<F(x2) — это следует из формулы (1), так как x2 — x1>0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f'(с)<0, и потому f(x1)>f (х2) — следует из формулы (1), так как x2—x1>0. Доказано убывание функции f на I. Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания). Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f'(t) (см. Мгновенная скорость). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t1 <t2, то f (t1)<f (t2). Это означает, что функция f возрастает на промежутке I. Замечание 1. Если функция f непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку. Замечание 2. Для решения неравенств f' (х)>0 и f' (х)<0 удобно пользоваться обобщением метода интервалов (теоремой Дарбу) : точки, в которых производная равна 0 или не существует, разбивают область определения функции f на промежутки, в каждом из которых f' сохраняет постоянный знак. (Этот факт доказывается в курсах математического анализа.) Знак можно определить, вычислив значение f' в какой-нибудь точке промежутка. Необходимые и достаточные условия существования экстремума функции в точке. Необходимое условие экстремума
Функция
g(x) в точке
имеет
экстремум(максимум или минимум), если
функция определена в двухсторонней
окрестности точки
и
для всех точек x некоторой области:
,
выполнено соответственно неравенство
(в
случае максимума) или
(в
случае минимума).
Экстремум
функции находиться из условия:
,
если производная существует, т.е.
приравниваем первую производную функции
к нулю.
Достаточное условие экстремума
1) Первое достаточное условие:
Если:
а)
f(x) непрерывная функция и определена
в некоторой окрестности точки
такой,
что первая производная в данной
точке равна нулю или не существует.
б) f(x) имеет конечную производную в окрестности задания и непрерывности функции
в)
производная сохраняет определенный
знак справа от точки
и
слева от этой же точки, тогда точку
можно
охарактеризовать следующим образом![]()
Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.
