
- •1. Дефекты паяных соединений, причины их возникновения и меры предупреждения
- •5. Область применения радиоскопического метода
- •6. Область применения радиометрического метода
- •7. Характеристики серийных магнитных дефектоскопов
- •8. Характеристики приборов размагничивания деталей и контроля концентрации магнитной суспензии
7. Характеристики серийных магнитных дефектоскопов
Дефектоскоп |
Назначение |
Технические характеристики |
Габаритные размеры, мм |
Переносной магнитный ПМД-70 |
Контроль в цеховых и полевых условиях |
Сила тока намагничивания 1000 А, мощность 0,25 кВт, зазор между полюсами электромагнита 75 мм, диаметр соленоида 88 мм. Комплект в двух чемоданах |
660 х 500 х 260 |
Переносной магнитный 77ПМД-ЗМ |
Детали диаметром до 90 мм; плоские, шириной до 200 мм |
Питание: источник постоянного тока 24 В (мощность 200 В * А); источник переменного тока 220 В (мощность 700 В * А) |
636x380x210 |
Передвижной магнитный МД-50П |
Крупногабаритные узлы и детали |
Сила тока намагничивания 5000 А, мощность 2,5 кВт, сечение намагничивающего кабеля 4, 10 и 50 мм |
1100x780x620 |
Передвижной магнитный ДМП-2 |
То же |
Сила тока намагничивания 1250 А, сила импульсного тока 350 А, потребляемая мощность 8 кВт |
780 х 910 х 490 |
Универсальный магнитный УМДЭ-10000 |
Детали длиной до 1600 мм, с удлинительными приставками до 4000 мм |
Сила тока намагничивания: переменного - до 14 000 А; выпрямленного - 2000 А. Потребляемая мощность 250 кВт |
2500 х 2000 х 800 |
Универсальный магнитный УМДЭ-2500 |
Детали длиной до 900 мм и диаметром до 370 мм |
Сила тока намагничивания до 4000 А, потребляемая мощность 20 кВт |
1800 х 1500x800 |
8. Характеристики приборов размагничивания деталей и контроля концентрации магнитной суспензии
Наименование |
Назначение |
Технические характеристики |
Габаритные размеры, мм |
Феррозондовый полюсоискатель ФП-1 |
Контроль степени размагниченности деталей |
Рабочая частота 10 кГц, чувствительность, регулируемая в 100 раз |
290x225x215 |
Анализатор концентрации магнитной суспензии АКС-1С |
Контроль магнитной суспензии в струе поливного устройства |
Интервал измеряемых концентраций 5 ... 50 г/л, точность 8 % |
340 х 190 х 90 |
Магнитный порошок наносится сухим и мокрым способами. В качестве магнитного порошка используют окалину железа (магнетит), измельченную до состояния пудры. При мокром методе порошок наносится в виде суспензии (вода, масло, керосин). Перед нанесением суспензии контролируемое изделие должно быть обезжирено. Контроль методом намагничивания осуществляется дефектоскопами: переносными (ПМД-70, 77ПМД-ЗМ), передвижным (МД50П), универсальными (УМДЭ-10000, УЭМД-2500) и др. После контроля паяные изделия размагничиваются в переменном магнитном поле. Характеристики серийных магнитных дефектов и приборов размагничивания контролируемого изделия, а также концентрации магнитной суспензии приведены в табл. 7, 8.
Магнитографический метод обеспечивает запись на магнитную ленту магнитных полей рассеяния. Лента накладывается на контролируемую поверхность изделия. Информация о результатах контроля считывается с помощью магнитографического дефектоскопа: возникающий на экране электрический сигнал пропорционален величине остаточного магнитного потока полей рассеяния дефектов, записанных на ленте.
Намагничивание контролируемого изделия производится также возбуждением вихревых токов с помощью переменного электромагнитного поля. Контроль осуществляется измерением воздействия поля вихревых токов на возбуждающий преобразователь. Разработано несколько методов электромагнитного контроля: фазовый, амплитудно-фазовый, амплитудно-частотный, многочастотный и их сочетания. Наибольшее применение нашли амплитудно-фазовый и амплитудно-частотный методы. Капиллярные методы контроля основаны на проникновении в дефекты контролируемого изделия специальных индикаторных пенетрантов, имеющих цветовой тон или лю-минесцирующих при воздействии ультрафиолетового излучения. Этот метод применяется для обнаружения трещин, непропаев, пор и других дефектов. Последовательность операций контроля капиллярным методом: нанесение пенетранта и удаление его (протиркой салфетками, промывкой водой, специальными составами и др.) после выдержки, необходимой для затенения дефектов; покрытие места контроля мелкодисперсным порошком или специальными красками, которые проявляют оставшийся в дефектных местах пенетрант. Образующийся след на месте дефекта можно наблюдать невооруженным глазом.
Различают четыре основных метода капиллярной дефектоскопии: люминесцентный, люминесцентно-цветной, люминесцентно-гидравлический и смачивание керосином.
Люминесцентный метод контроля отличается повышенной контрастностью пенетранта в результате введения в него люминесци-рующих в ультрафиолетовом свете веществ.
В качестве индикаторного пенетранта при люминесцентном методе контроля нашел применение керосин. Добавление в него минеральных масел усиливает люминесценцию. Фосфоресцирующим компонентом в керосине является норпол, дающий яркое желто-зеленое свечение. В качестве индикаторных пенетрантов можно применять люминесцентные жидкости типа ЛЖ (ЛЖ-1, ЛЖ-2, ЛЖ-4, ЛЖ-5, ЛЖ-6А и др.). После нанесения на место контроля эти жидкости удаляются водой, при необходимости с добавкой эмульгаторов ОП-7 или ОП-10. Последующая сушка детали производится с помощью опилок.
Дефекты могут обнаруживаться также вследствие различного отражения дневного света от проявителя и пенетранта. В состав индикаторных пенетрантов в этом случае вводят жирорастворимый темно-красный анилиновый краситель «Судан IV». Режим контроля с использованием керосино-скипидарного раствора этого красителя следующий: время пропитки 8 ... 15 мин; время проявления 3 ... 30 мин; очистка - протирка содовым раствором.
Большое распространение получил диффузионный метод проявления пенетранта (метод красок), при котором сразу после удаления его с поверхности изделия наносят белую проявляющую краску.
Люминесцентно-цветной метод основан на использовании люминофоров - красителей, светящихся в оранжево-красной области спектра при воздействии ультрафиолетового излучения и избирательно отражающих дневной свет в красной области спектра. Люминесцентно-цветной контроль паяных соединений осуществляют с помощью комплекта АЭРО-12А, состоящего из флуоресцирующего красителя родамина-С, растворителя - гидролизного или технического этилового спирта и эмульгатора ОП-7. Очистка ведется последовательно водой, очистителем на основе эмульгатора ОП-7 и этиловым спиртом, окончательная очистка - промывка водой. Проявителем служит лак на основе белой нитроэмали «Экстра», коллодия и ацетона. Люминесцентно-цветной метод позволяет выявлять дефекты паяных соединений как из ферромагнитных, так и неферромагнитных металлов.
Для выявления дефектов, не обнаруживаемых люминесцентным, цветным и люминесцентно-цветным методами, используют газосорбционный радиоизотопный метод контроля. В качестве вещества, заполняющего поверхностные дефекты, в этом случае применяют не жидкие пенетранты, а газообразный β-радиоактивный газ. Излучение газа, сорбированного поверхностными дефектами, можно зарегистрировать на рентгеновской пленке или люминесцирующими преобразователями излучения. Контроль дефектов этим методом включает обезгаживание изделия в вакуумной камере, наполнение камеры β-излучающим газом, удаление изделия из камеры, получение изображения на рентгеновской пленке или выявление дефектов с помощью люминесцирующих преобразователей.
Люминесцентный гидравлический метод контроля основан на использовании капиллярных свойств жидкостей, светящихся под действием ультрафиолетового излучения. При контроле используются люминесцентные жидкости: шубекол, ЛЖ-1, ЛЖ-2, ЛЖ-4, ЛЖ-5 и др.
Смачивание керосином. Одну сторону изделия обмазывают мелом, а противоположную сторону обильно смачивают керосином. В местах негерметичности на поверхности меловой обмазки появляются бурые пятна.
При керосино-пневматическом методе со стороны смачивания керосином дополнительно подается избыточное давление воздуха 0,3 ... 0,4 МПа.
Керосино-вакуумный метод основан на создании со стороны меловой обмазки разрежения с помощью переносных вакуумных камер. Приложение вибрации к контролируемому изделию повышает проникание керосина через неплотности. Этот метод отличается повышенной разрешающей способностью и производительностью.
Контроль течеисканием - контроль герметичности паяных изделий - осуществляют давлением жидкости или газа. Течь в дефектных местах обнаруживается течеисканием.
Чувствительность метода определяется наименьшим количеством пробного вещества (жидкости или газа), надежно регистрируемого при контроле. При масс-спектрометрическом методе контроля в качестве пробных веществ применяют гелий; при галогенном методе контроля - фреон и другие газы. При выборе метода контроля течеисканием необходимо исходить из того, что чувствительность метода должна в 2 - 3 раза превышать заданную степень герметичности. За чувствительность метода контроля течеисканием принимается устойчиво регистрируемая наименьшая утечка контрольного вещества. Контрольным веществом называется смесь пробного вещества с наполнителем (например, гелиево-азотная смесь при масс-спектрометрическом методе контроля).
Газоаналитический метод течеискания основан на изменении электрического сопротивления нагретой проволоки в присутствии пробного газа в сравнении с такой же проволокой, нагретой в среде воздуха. На этом принципе разработаны катарометрические течеи-скатели, действие которых основано на изменении теплопроводности среды при проникновении пробного вещества через течь. Отечественной промышленностью выпускаются переносные катарометрические течеискатели ТП 7101 ИТП7101М.
Пузырьковый метод контроля основан на регистрации появления пузырьков пробного вещества в дефектных местах контролируемого изделия. Различают пневматический, пневмо-гидравлический и вакуумный пузырьковые методы. При пневматическом способе сторона контролируемого изделия, противоположная подаче давления воздуха, обмазывается пено-образующим веществом. В качестве простейшего пенообразующего вещества служит раствор мыла в воде. Режимы контроля пузырьковым методом определяются техническими условиями на контролируемое изделие. Пузырьковый метод контроля может производиться путем подачи газа в контролируемое изделие с последующим погружением его в жидкость. Дефектные места определяются по появлению пузырьков газа. Вакуумный пузырьковый метод применяют для контроля изделий при одностороннем к ним подходе. В этом случае на поверхность дефектного места наносят пенообразуюшее вещество, после чего на него устанавливается переносная вакуумная камера со смотровым окошком, допускающим осмотр места контроля.
При создании необходимого разрежения имеющиеся неплотности обнаруживаются по появлению пузырьков.
Химический метод основан на химическом воздействии аммиака NH3 на фенолфталеин или азотнокислую ртуть, изменяющих свою окраску под действием аммиака. В качестве контрольного газа при этом методе применяют 1 %-ную смесь аммиака с воздухом или 3 %-ную смесь аммиака с азотом. Индикаторную ленту приготавливают непосредственно перед контролем, пропитывая фенолфталеином или азотнокислой ртутью фильтровальную бумагу или белую ткань. Избыточное давление газа в процессе контроля берется 0,1 ... 0,15 МПа. При контроле химическим методом необходимо соблюдать правила техники безопасности и производственной санитарии, предусмотренные при работе с вредными химическими веществами.
Манометрический метод основан на регистрации изменения испытательного давления контрольного или пробного вещества, которым заполняется контролируемое изделие. Испытательное давление и время выдержки определяются техническими условиями на изделие.
Галогенный метод контроля основан на изменении эмиссии ионов нагретой металлической поверхностью при попадании на нее пробного вещества, содержащего галогены. Метод отличается высокой чувствительностью и применяется для контроля герметичности ответственных паяных изделий.
Масс-спектрюметрический метод контроля основан на принципе разделения по массам ионов газов, проходящих через неплотности контролируемого изделия с помощью масс-спектрометров. Этот метод отличается высокой чувствительностью и применяется для контроля герметичности ответственных изделий. В качестве пробного газа используют водород, гелий, аргон и другие газы (наибольшее применение нашел гелий). В качестве контрольных газов применяют чистый гелий, смеси его с воздухом или азотом при концентрации гелия 10 ... 90 %. Для контроля герметичности нашли распространение гелиевые течеискатели со встроенным в них масс-спектрометром. При контроле герметичности течеискате-лем необходимо обеспечить такое заполнение изделия контрольным газом, при котором обеспечивается равномерная концентрация гелия во всем объеме изделия. Избыточное давление контрольного газа устанавливается в соответствии с техническими условиями. Проверку герметичности проводят путем перемещения щупа гелиевого течеискателя по кон-» тролируемой поверхности.
Радиационный метод контроля герметичности основан на фиксировании излучения, испускаемого радиоактивными жидкостями или газами, которыми заполняется контролируемое изделие. Применяются на практике и стандартизированы радиационные методы контроля герметичности тепловыделяющих элементов ядерных реакторов.
Разрушающие методы. При разрушающих методах контроля паяных изделий испытанию до разрушения подвергают: непосредственно изделие, образцы, вырезанные из взятого от партии изделия, или образцы, вырезанные из «свидетеля», т.е. паявшегося по той же технологии изделия, предназначенного для проведения испытаний. Для выявления механических свойств паяных соединений проводят испытания паяных образцов при различных способах нагружения: растяжении, сжатии, изгибе, кручении и др. Вид и требования разрушающих методов контроля определяются техническими условиями на паяное изделие.
Список литературы
Бакутин В. Н., Заика Ж. А., Карпов В. И. Определение дефектов пайки радиационным методом // Дефектоскопия. 1972. № 6. С. 75-80.
Буслович С. Л., Гельфгат Ю. М., Коциныш И. А. Автоматизация пайки печатных плат. М: Энергия, 1976. 216 с.
Румянцев С. В., Добромыслов В. А., Борисов О. И. Неразрушающие методы контроля сварных соединений. М.: Машиностроение, 1976.335 с.
Ремизов А. Л. Ультразвуковая дефектоскопия паяных соединений строительных металлоконструкций / В сб.: Пайка 2000. Тольятти, 2000. С. 89 - 95.
Ковшиков Е. К. Неразрушающий контроль качества эвтектической пайки кристалла кремния при сборке интегральных схем / В сб.: Неразрушающий контроль и системы управления качеством сварных и паяных соединений. М.: ЦРДЗ, 1992. С. 129 - 133.
Источник: Справочник по пайке. Под ред. И.Е.Петрунина. Москва, Машиностроение, 2003
http://www.svarkainfo.ru/rus/technology/payka/controlsoldering