
- •Предисловие
- •Введение Примеры маркетинговых исследований
- •Получение маркетинговой информации3
- •Определение маркетинговых исследований
- •Задачи и этапы маркетинговых исследований
- •Организация подразделений маркетинговых исследований
- •Этика маркетинговых исследований
- •Глава 1. Формулировка проблемы
- •Возникновение проблемы
- •Принятие решения о проведении исследований
- •Заключение договора на проведение исследований
- •Глава 2. Проектирование исследования
- •Поисковые исследования Цели и принципы поисковых исследований
- •Основные методы поисковых исследований Поиск по литературным источникам
- •Обзор опыта37
- •Анализ избранных случаев
- •Фокус-группы39
- •Проблемные группы
- •Экспертные оценки
- •Однократные экспертные опросы
- •Метод «Дельфи»
- •Метод мозговой атаки
- •Проведение экспертных опросов
- •Описательные исследования Цели и принципы описательных исследований
- •Характеристика описательных исследований
- •Исследования с помощью списков
- •Разовые исследования
- •Исследования причинности
- •Принципы исследования причинности Анализ сопутствующих изменений
- •Анализ временнóй последовательности событий
- •Отсекание других возможных объяснений
- •Неэкспериментальные и экспериментальные методы исследования причинности
- •Сводка типов и методов исследований
- •Проектирование эксперимента
- •Система обозначений
- •Посторонние переменные
- •Основные проекты экспериментов
- •Реальные эксперименты
- •Преэкспериментальные проекты
- •Квазиэксперименты
- •Тестовый маркетинг
- •Тестовый маркетинг на модельном рынке
- •Тестовый маркетинг на управляемом рынке
- •Тестовый маркетинг на реальном рынке
- •Применение методов тестового маркетинга
- •Электронный тестовый маркетинг
- •Глава 3. Методы и формы сбора данных
- •Сбор вторичных данных
- •Стандартизированные отчеты
- •Использование сканеров
- •Измерение охвата аудитории и эффективности рекламы
- •Первичные данные
- •Основные методы сбора первичных данных Опрос
- •Наблюдение
- •Сравнение методов сбора первичных данных
- •Опросы Виды опросов Структурированный, незамаскированный
- •Неструктурированный, незамаскированный
- •Неструктурированный, замаскированный
- •Структурированный, замаскированный
- •Сравнение способов проведения опроса
- •Способы проведения опроса
- •Параметры различных способов опроса
- •Особенности различных способов опроса
- •Сводка способов проведения опроса
- •Использование компьютеров при опросах
- •Наблюдения Виды наблюдения
- •Структурированные – неструктурированные наблюдения
- •Замаскированные – незамаскированные наблюдения
- •Прямые – непрямые наблюдения
- •Организация наблюдения
- •Технические средства наблюдения
- •Проектирование анкет
- •Определение информации, которую требуется получить
- •Выбор типа анкеты, метода проведения анкетирования
- •Содержание каждого вопроса
- •Форма ответа на каждый вопрос
- •Выбор слов для каждого вопроса, построение вопроса
- •Последовательность вопросов
- •Физические характеристики анкеты
- •Проверка предыдущих шагов
- •Предварительная проверка анкеты на ограниченной выборке и повторение всего процесса
- •Глава 4. Проектирование выборки и сбор данных
- •Возможные способы задания рамок выборки
- •Виды планов выборки
- •Детерминированные выборки
- •Выборки по удобству
- •Выборки по суждениям
- •Выборки по квотам
- •Вероятностные выборки
- •Простая случайная выборка
- •Оценка доверительного интервала простой случайной выборки
- •Стратифицированная выборка
- •Виды стратификации
- •Гнездовые выборки
- •Механическая выборка
- •Территориальная выборка
- •Определение размера выборки
- •Размер выборки при оценке среднего
- •Размер выборки при определении долей
- •Учет конечности размера совокупности
- •Другие случаи
- •Использование шаблонов итоговых таблиц для определения размера выборки
- •Ошибки при сборе данных
- •Неохват
- •Переохват
- •Отказ отвечать
- •Неответ по позициям
- •Процесс сбора данных
- •Работа интервьюеров
- •Контроль работы интервьюеров
- •Глава 5. Анализ данных
- •Предварительные шаги Редактирование
- •Кодирование
- •Табуляция
- •Простая табуляция
- •Перекрестная табуляция
- •Главная таблица
- •Анализ данных
- •Шкалы измерения атрибутов
- •Номинальная шкала
- •Порядковая шкала
- •Интервальная шкала
- •Относительная шкала
- •Параметры, влияющие на выбор метода анализа
- •Варианты представления данных
- •Группировка
- •Индексы
- •Графический метод
- •Динамические ряды
- •Цель и результаты анализа
- •Одномерный анализ
- •Критерий согласия 2.
- •Тест Колмогорова-Смирнова
- •Гипотезы об одном среднем
- •Гипотезы о двух средних в независимых выборках
- •Многомерный анализ
- •Коэффициент контингенции154
- •Индекс предсказательной связи157
- •Коэффициент ранговой корреляции Спирмана158
- •Коэффициент конкордации159
- •Кластерный анализ
- •Регрессионный анализ Основные принципы
- •DataMiningв регрессионном анализе
- •Регрессия с фиктивными переменными 174
- •Факторный анализ
- •Метод главных компонент
- •Интерпретация данных с помощью факторного анализа
- •Использование переменных-заменителей
- •Проблемы применения метода
- •Дискриминантный анализ
- •Классификация объектов с использованием дискриминантной функции
- •Дискриминантный анализ для числа групп более двух
- •Проблемы применения метода
- •Деревья классификации
- •Описание метода
- •1 , 2 , 3 , 4 , 5 , Более , нет ответа ,
- •Работа с деревьями классификации
- •Классификация методами сравнения с образцом192
- •Метод сравнения с прототипом
- •Методkближайших соседей
- •Определение
- •Область применения
- •МетодыDataMining
- •Глава 6. Измерение отношения
- •Методы измерения отношения
- •Метод равных интервалов Турстоуна и Чейва197
- •Метод суммированного рейтинга Ликерта203
- •Семантическая дифференциальная шкала206
- •Непарная шкала208
- •Шкалы рейтинга Типы шкал рейтинга
- •Надежность шкал рейтинга
- •Карты восприятия211
- •Типы карт восприятия
- •Многомерное шкалирование
- •Совместный анализ219
- •Описание метода
- •Проблемы применения метода
- •Глава 7. Измерения психологических атрибутов
- •Проектирование тестов
- •Глава 8. Практические вопросы маркетинговых исследований
- •Обеспечение валидности результатов описательных исследований
- •Валидность и надежность измерений
- •Последовательность проверки инструмента измерения
- •Дифференцирующая способность анкеты
- •Стабильность результатов измерений
- •Валидность содержания
- •Особенности применения метода судейства
- •Валидность совпадения
- •Типовые маркетинговые исследования
- •Исследование внешних факторов
- •Демография
- •Экономическая среда
- •Технологическая среда
- •Политика и законодательство
- •Социокультурная среда
- •Исследование потребительского рынка
- •Рыночный потенциал и базовый спрос
- •Текущий объем реализации на рынке
- •Коэффициент насыщенности рынка
- •Объем продаж компании
- •Доля рынка
- •Исследование рынка товаров производственно-технического назначения
- •Изучение потребителей
- •Факторы, определяющие решение о покупке
- •Процесс покупки
- •Изучение отношения
- •Изучение уровня удовлетворенности
- •Изучение цен
- •Исследование продаж
- •Исследования в области рекламы Изучение средств рекламы
- •Оценка рекламной кампании
- •Исследования, связанные с разработкой рекламы
- •Изучение личных продаж
- •Изучение стимулирования сбыта
- •Изучение пропаганды иPr
- •Изучение товара
- •Оценка качества товара Показатели качества
- •Уровень качества
- •Исследование конкурентоспособности товаров
- •Исследование конкурентоспособности фирмы
- •Исследование конкурентной среды
- •Источники информации о конкурентах
- •Обобщение и сопоставление информации о своей фирме и конкурентах
- •Международные маркетинговые исследования
- •Специфика международного маркетинга
- •Методы опроса
- •Измерения в междунарожных маркетинговых исследованиях
- •Анализ данных
- •Примеры ситуаций, где необходимы международные маркетинговые исследования
- •Исследования для эмпирического маркетинга
- •Анализ переживаний
- •Управление переживаниями
- •Необходимая информация
- •Бенчмаркинг и маркетинговые исследования Сущность бенчмаркинга
- •Принципы проведения бенчмаркинга
- •Виды бенчмаркинга
- •Порядок проведения бенчмаркинга
- •Примеры бенчмаркинга
- •Глава 9. Отчет об исследованиях
- •Структура отчета о маркетинговых исследованиях
- •Содержание отчета
- •Оформление отчета
- •Табличное представление материала
- •Графическое представление материала
- •Доклад об исследовании
- •Заключение
- •Приложение
- •Оформление документов по договору на проведение исследования
- •Договор на проведение исследований
- •Протокол соглашения о договорной цене
- •Календарный план
- •Техническое задание
- •Оформление отчета об исследованиях
- •Список литературы
- •Содержание
- •Глава 1. Формулировка проблемы 27
- •Глава 2. Проектирование исследования 34
- •Глава 3. Методы и формы сбора данных 77
- •Глава 4. Проектирование выборки и сбор данных 121
- •Глава 5. Анализ данных 147
- •Глава 6. Измерение отношения 239
- •Глава 7. Измерения психологических атрибутов 264
- •Глава 8. Практические вопросы маркетинговых исследований 272
- •Глава 9. Отчет об исследованиях 332
Критерий согласия 2.
Часто в маркетинге требуется проверить, совпадает ли частота некоторого события с некоторым предсказанным значением. Пусть, например, разработан новый продукт, выпускаемый в трех видах упаковки: маленькой, средней и большой. Прошлый опыт производителя говорит о том, что обычно на одну проданную маленькую упаковку приходится четыре средних и три больших (это и есть нуль-гипотеза). Задача состоит в том, чтобы проверить, так ли это. Пусть имеются результаты продаж: 120маленьких упаковок,550средних и330больших; всего –1000.
Если бы гипотеза была верна, то среди тысячи продаж было бы 1000*1/8=125маленьких упаковок,1000*4/8=500 средних и1000*3/8=375больших. При таких результатах не возникло бы сомнений в ее справедливости. Очевидно, что результаты126, 501, 373также свидетельствовали бы в пользу нуль-гипотезы, так как возможны случайные малые отклонения. Однако полученные результаты отличаются от предсказанных гипотезой довольно сильно. Возникает вопрос: можно ли считать их случайными или они говорят о том, что гипотеза неверна?
Для проверки данной нуль-гипотезы можно использовать критерий согласия 2. Он основан на сравнении ожидаемого и реального количества проданных упаковок.
где i– номер типа упаковки;k– количество типов упаковок;Oi– измеренное количество проданных упаковок каждого типа; Ei– ожидаемое количество проданных упаковок.
В идеале, когда ожидания полностью оправдываются, значение 2равно нулю. Для реальных случаев можно допустить некоторые отклонения от идеала. Подставив значения в формулу, получим2=10,9.
Критический уровень отклонений от идеала, за которым уже нельзя считать их случайными, задается распределением 2.Это одно из распределений, которое определяется параметром, называемым количеством степеней свободы.
Поскольку данная книга посвящена в основном прикладным вопросам, здесь не приводится детальное описание этого параметра. Для конкретных случаев указывается, как определять . Затем значение 2 находится по стандартным таблицам для заданного уровня и . При больших распределение 2 становится близким к нормальному.
В данном случае =k-1=2.Выбрав наиболее типовое значение=0,05,по таблице находим критическое значениекр2 =5,99 146. Таким образом, вряд ли оценка отклонений, равная10,9,обусловлена только случайными факторами. Значит, нуль-гипотеза отвергается в пользу альтернативной. То есть предположение производителя не подтвердилось.
В данном случае нуль-гипотеза была отвергнута «с запасом», можно было бы взять значение и поменьше. Интересно было бы знать, насколько малым можно взять, чтобы все-таки отвергнуть нуль-гипотезу, то есть то, с какой минимальной вероятностью ошибки отвергается нуль-гипотеза. Это делается по той же таблице значений2. Но в данном случае берется=2 и определяется, какому будет соответствовать критическое значение2, ближайшее к вычисленному, но меньшее его. Это и будет минимальная ошибка для данного исследования. Например, для рассмотренного примера она равна0,005 147. То есть можно сказать, что, отвергнув нуль-гипотезу по результатам исследования, мы уверены в истинности альтернативной гипотезы на0,995=99,5%.