
- •Introduction
- •Who This Book Is For
- •What This Book Covers
- •How This Book Is Structured
- •What You Need to Use This Book
- •Conventions
- •Source Code
- •Errata
- •p2p.wrox.com
- •What Are Regular Expressions?
- •What Can Regular Expressions Be Used For?
- •Finding Doubled Words
- •Checking Input from Web Forms
- •Changing Date Formats
- •Finding Incorrect Case
- •Adding Links to URLs
- •Regular Expressions You Already Use
- •Search and Replace in Word Processors
- •Directory Listings
- •Online Searching
- •Why Regular Expressions Seem Intimidating
- •Compact, Cryptic Syntax
- •Whitespace Can Significantly Alter the Meaning
- •No Standards Body
- •Differences between Implementations
- •Characters Change Meaning in Different Contexts
- •Regular Expressions Can Be Case Sensitive
- •Case-Sensitive and Case-Insensitive Matching
- •Case and Metacharacters
- •Continual Evolution in Techniques Supported
- •Multiple Solutions for a Single Problem
- •What You Want to Do with a Regular Expression
- •Replacing Text in Quantity
- •Regular Expression Tools
- •findstr
- •Microsoft Word
- •StarOffice Writer/OpenOffice.org Writer
- •Komodo Rx Package
- •PowerGrep
- •Microsoft Excel
- •JavaScript and JScript
- •VBScript
- •Visual Basic.NET
- •Java
- •Perl
- •MySQL
- •SQL Server 2000
- •W3C XML Schema
- •An Analytical Approach to Using Regular Expressions
- •Express and Document What You Want to Do in English
- •Consider the Regular Expression Options Available
- •Consider Sensitivity and Specificity
- •Create Appropriate Regular Expressions
- •Document All but Simple Regular Expressions
- •Document What You Expect the Regular Expression to Do
- •Document What You Want to Match
- •Test the Results of a Regular Expression
- •Matching Single Characters
- •Matching Sequences of Characters That Each Occur Once
- •Introducing Metacharacters
- •Matching Sequences of Different Characters
- •Matching Optional Characters
- •Matching Multiple Optional Characters
- •Other Cardinality Operators
- •The * Quantifier
- •The + Quantifier
- •The Curly-Brace Syntax
- •The {n} Syntax
- •The {n,m} Syntax
- •Exercises
- •Regular Expression Metacharacters
- •Thinking about Characters and Positions
- •The Period (.) Metacharacter
- •Matching Variably Structured Part Numbers
- •Matching a Literal Period
- •The \w Metacharacter
- •The \W Metacharacter
- •Digits and Nondigits
- •The \d Metacharacter
- •Canadian Postal Code Example
- •The \D Metacharacter
- •Alternatives to \d and \D
- •The \s Metacharacter
- •Handling Optional Whitespace
- •The \S Metacharacter
- •The \t Metacharacter
- •The \n Metacharacter
- •Escaped Characters
- •Finding the Backslash
- •Modifiers
- •Global Search
- •Case-Insensitive Search
- •Exercises
- •Introduction to Character Classes
- •Choice between Two Characters
- •Using Quantifiers with Character Classes
- •Using the \b Metacharacter in Character Classes
- •Selecting Literal Square Brackets
- •Using Ranges in Character Classes
- •Alphabetic Ranges
- •Use [A-z] With Care
- •Digit Ranges in Character Classes
- •Hexadecimal Numbers
- •IP Addresses
- •Reverse Ranges in Character Classes
- •A Potential Range Trap
- •Finding HTML Heading Elements
- •Metacharacter Meaning within Character Classes
- •The ^ metacharacter
- •How to Use the - Metacharacter
- •Negated Character Classes
- •Combining Positive and Negative Character Classes
- •POSIX Character Classes
- •The [:alnum:] Character Class
- •Exercises
- •String, Line, and Word Boundaries
- •The ^ Metacharacter
- •The ^ Metacharacter and Multiline Mode
- •The $ Metacharacter
- •The $ Metacharacter in Multiline Mode
- •Using the ^ and $ Metacharacters Together
- •Matching Blank Lines
- •Working with Dollar Amounts
- •Revisiting the IP Address Example
- •What Is a Word?
- •Identifying Word Boundaries
- •The \< Syntax
- •The \>Syntax
- •The \b Syntax
- •The \B Metacharacter
- •Less-Common Word-Boundary Metacharacters
- •Exercises
- •Grouping Using Parentheses
- •Parentheses and Quantifiers
- •Matching Literal Parentheses
- •U.S. Telephone Number Example
- •Alternation
- •Choosing among Multiple Options
- •Unexpected Alternation Behavior
- •Capturing Parentheses
- •Numbering of Captured Groups
- •Numbering When Using Nested Parentheses
- •Named Groups
- •Non-Capturing Parentheses
- •Back References
- •Exercises
- •Why You Need Lookahead and Lookbehind
- •The (? metacharacters
- •Lookahead
- •Positive Lookahead
- •Negative Lookahead
- •Positive Lookahead Examples
- •Positive Lookahead in the Same Document
- •Inserting an Apostrophe
- •Lookbehind
- •Positive Lookbehind
- •Negative Lookbehind
- •How to Match Positions
- •Adding Commas to Large Numbers
- •Exercises
- •What Are Sensitivity and Specificity?
- •Extreme Sensitivity, Awful Specificity
- •Email Addresses Example
- •Replacing Hyphens Example
- •The Sensitivity/Specificity Trade-Off
- •Sensitivity, Specificity, and Positional Characters
- •Sensitivity, Specificity, and Modes
- •Sensitivity, Specificity, and Lookahead and Lookbehind
- •How Much Should the Regular Expressions Do?
- •Abbreviations
- •Characters from Other Languages
- •Names
- •Sensitivity and How to Achieve It
- •Specificity and How to Maximize It
- •Exercises
- •Documenting Regular Expressions
- •Document the Problem Definition
- •Add Comments to Your Code
- •Making Use of Extended Mode
- •Know Your Data
- •Abbreviations
- •Proper Names
- •Incorrect Spelling
- •Creating Test Cases
- •Debugging Regular Expressions
- •Treacherous Whitespace
- •Backslashes Causing Problems
- •Considering Other Causes
- •The User Interface
- •Metacharacters Available
- •Quantifiers
- •The @ Quantifier
- •The {n,m} Syntax
- •Modes
- •Character Classes
- •Back References
- •Lookahead and Lookbehind
- •Lazy Matching versus Greedy Matching
- •Examples
- •Character Class Examples, Including Ranges
- •Whole Word Searches
- •Search-and-Replace Examples
- •Changing Name Structure Using Back References
- •Manipulating Dates
- •The Star Training Company Example
- •Regular Expressions in Visual Basic for Applications
- •Exercises
- •The User Interface
- •Metacharacters Available
- •Quantifiers
- •Modes
- •Character Classes
- •Alternation
- •Back References
- •Lookahead and Lookbehind
- •Search Example
- •Search-and-Replace Example
- •Online Chats
- •POSIX Character Classes
- •Matching Numeric Digits
- •Exercises
- •Introducing findstr
- •Finding Literal Text
- •Quantifiers
- •Character Classes
- •Command-Line Switch Examples
- •The /v Switch
- •The /a Switch
- •Single File Examples
- •Simple Character Class Example
- •Find Protocols Example
- •Multiple File Example
- •A Filelist Example
- •Exercises
- •The PowerGREP Interface
- •A Simple Find Example
- •The Replace Tab
- •The File Finder Tab
- •Syntax Coloring
- •Other Tabs
- •Numeric Digits and Alphabetic Characters
- •Quantifiers
- •Back References
- •Alternation
- •Line Position Metacharacters
- •Word-Boundary Metacharacters
- •Lookahead and Lookbehind
- •Longer Examples
- •Finding HTML Horizontal Rule Elements
- •Matching Time Example
- •Exercises
- •The Excel Find Interface
- •Escaping Wildcard Characters
- •Using Wildcards in Data Forms
- •Using Wildcards in Filters
- •Exercises
- •Using LIKE with Regular Expressions
- •The % Metacharacter
- •The _ Metacharacter
- •Character Classes
- •Negated Character Classes
- •Using Full-Text Search
- •Using The CONTAINS Predicate
- •Document Filters on Image Columns
- •Exercises
- •Using the _ and % Metacharacters
- •Testing Matching of Literals: _ and % Metacharacters
- •Using Positional Metacharacters
- •Using Character Classes
- •Quantifiers
- •Social Security Number Example
- •Exercises
- •The Interface to Metacharacters in Microsoft Access
- •Creating a Hard-Wired Query
- •Creating a Parameter Query
- •Using the ? Metacharacter
- •Using the * Metacharacter
- •Using the # Metacharacter
- •Using the # Character with Date/Time Data
- •Using Character Classes in Access
- •Exercises
- •The RegExp Object
- •Attributes of the RegExp Object
- •The Other Properties of the RegExp Object
- •The test() Method of the RegExp Object
- •The exec() Method of the RegExp Object
- •The String Object
- •Metacharacters in JavaScript and JScript
- •SSN Validation Example
- •Exercises
- •The RegExp Object and How to Use It
- •Quantifiers
- •Positional Metacharacters
- •Character Classes
- •Word Boundaries
- •Lookahead
- •Grouping and Nongrouping Parentheses
- •Exercises
- •The System.Text.RegularExpressions namespace
- •A Simple Visual Basic .NET Example
- •The Classes of System.Text.RegularExpressions
- •The Regex Object
- •Using the Match Object and Matches Collection
- •Using the Match.Success Property and Match.NextMatch Method
- •The GroupCollection and Group Classes
- •The CaptureCollection and Capture Class
- •The RegexOptions Enumeration
- •Case-Insensitive Matching: The IgnoreCase Option
- •Multiline Matching: The Effect on the ^ and $ Metacharacters
- •Right to Left Matching: The RightToLeft Option
- •Lookahead and Lookbehind
- •Exercises
- •An Introductory Example
- •The Classes of System.Text.RegularExpressions
- •The Regex Class
- •The Options Property of the Regex Class
- •Regex Class Methods
- •The CompileToAssembly() Method
- •The GetGroupNames() Method
- •The GetGroupNumbers() Method
- •GroupNumberFromName() and GroupNameFromNumber() Methods
- •The IsMatch() Method
- •The Match() Method
- •The Matches() Method
- •The Replace() Method
- •The Split() Method
- •Using the Static Methods of the Regex Class
- •The IsMatch() Method as a Static
- •The Match() Method as a Static
- •The Matches() Method as a Static
- •The Replace() Method as a Static
- •The Split() Method as a Static
- •The Match and Matches Classes
- •The Match Class
- •The GroupCollection and Group Classes
- •The RegexOptions Class
- •The IgnorePatternWhitespace Option
- •Metacharacters Supported in Visual C# .NET
- •Using Named Groups
- •Using Back References
- •Exercise
- •The ereg() Set of Functions
- •The ereg() Function
- •The ereg() Function with Three Arguments
- •The eregi() Function
- •The ereg_replace() Function
- •The eregi_replace() Function
- •The split() Function
- •The spliti() Function
- •The sql_regcase() Function
- •Perl Compatible Regular Expressions
- •Pattern Delimiters in PCRE
- •Escaping Pattern Delimiters
- •Matching Modifiers in PCRE
- •Using the preg_match() Function
- •Using the preg_match_all() Function
- •Using the preg_grep() Function
- •Using the preg_quote() Function
- •Using the preg_replace() Function
- •Using the preg_replace_callback() Function
- •Using the preg_split() Function
- •Supported Metacharacters with ereg()
- •Using POSIX Character Classes with PHP
- •Supported Metacharacters with PCRE
- •Positional Metacharacters
- •Character Classes in PHP
- •Documenting PHP Regular Expressions
- •Exercises
- •W3C XML Schema Basics
- •Tools for Using W3C XML Schema
- •Comparing XML Schema and DTDs
- •How Constraints Are Expressed in W3C XML Schema
- •W3C XML Schema Datatypes
- •Derivation by Restriction
- •Unicode and W3C XML Schema
- •Unicode Overview
- •Using Unicode Character Classes
- •Matching Decimal Numbers
- •Mixing Unicode Character Classes with Other Metacharacters
- •Unicode Character Blocks
- •Using Unicode Character Blocks
- •Metacharacters Supported in W3C XML Schema
- •Positional Metacharacters
- •Matching Numeric Digits
- •Alternation
- •Using the \w and \s Metacharacters
- •Escaping Metacharacters
- •Exercises
- •Introduction to the java.util.regex Package
- •Obtaining and Installing Java
- •The Pattern Class
- •Using the matches() Method Statically
- •Two Simple Java Examples
- •The Properties (Fields) of the Pattern Class
- •The CASE_INSENSITIVE Flag
- •Using the COMMENTS Flag
- •The DOTALL Flag
- •The MULTILINE Flag
- •The UNICODE_CASE Flag
- •The UNIX_LINES Flag
- •The Methods of the Pattern Class
- •The compile() Method
- •The flags() Method
- •The matcher() Method
- •The matches() Method
- •The pattern() Method
- •The split() Method
- •The Matcher Class
- •The appendReplacement() Method
- •The appendTail() Method
- •The end() Method
- •The find() Method
- •The group() Method
- •The groupCount() Method
- •The lookingAt() Method
- •The matches() Method
- •The pattern() Method
- •The replaceAll() Method
- •The replaceFirst() Method
- •The reset() Method
- •The start() Method
- •The PatternSyntaxException Class
- •Using the \d Metacharacter
- •Character Classes
- •The POSIX Character Classes in the java.util.regex Package
- •Unicode Character Classes and Character Blocks
- •Using Escaped Characters
- •Using Methods of the String Class
- •Using the matches() Method
- •Using the replaceFirst() Method
- •Using the replaceAll() Method
- •Using the split() Method
- •Exercises
- •Obtaining and Installing Perl
- •Creating a Simple Perl Program
- •Basics of Perl Regular Expression Usage
- •Using the m// Operator
- •Using Other Regular Expression Delimiters
- •Matching Using Variable Substitution
- •Using the s/// Operator
- •Using s/// with the Global Modifier
- •Using s/// with the Default Variable
- •Using the split Operator
- •Using Quantifiers in Perl
- •Using Positional Metacharacters
- •Captured Groups in Perl
- •Using Back References in Perl
- •Using Alternation
- •Using Character Classes in Perl
- •Using Lookahead
- •Using Lookbehind
- •Escaping Metacharacters
- •A Simple Perl Regex Tester
- •Exercises
- •Index

Regular Expressions in Java
Then the value of the foundOrNot variable is tested as the condition controlling an if statement. If it is not true, the message No match found. is displayed:
if(!foundOrNot){ System.out.println(“No match found.”);
}
}
Finally, the tidyUp() method tidies up.
The pattern used is defined in the file Pattern.txt:
\d\w
The pattern matches a numeric digit followed by a word character (meaning an alphabetic character of either case, an underline character, or a numeric digit).
The test string is located in the file TestText.txt:
3D 2A 5R
There are three matches for the pattern \d\w: 3D, 2A, and 5R.
The Properties (Fields) of the Pattern Class
The following table summarizes information about the properties (fields) of the Pattern class.
Property (Field) |
Description |
|
|
CANON_EQ |
Enables canonical equivalence when matching. |
CASE_INSENSITIVE |
Enables case-insensitive matching. |
COMMENTS |
Enables whitespace and comments to be included in the pattern. |
DOTALL |
With this flag set, the . (period) metacharacter matches all characters. |
MULTILINE |
Alters the behavior of the ^ (caret) and $ (dollar) positional |
|
metacharacters. |
UNICODE_CASE |
In this mode, case-insensitive matching is applied to all Unicode |
|
alphabetic characters (as appropriate). |
UNIX_LINES |
In this mode, only the \n line terminator affects the behavior of the |
|
. (period), ^ (caret), and $ (dollar) metacharacters. |
|
|
The CASE_INSENSITIVE Flag
The CASE_INSENSITIVE flag applies only to U.S. ASCII characters. If you need case-insensitive matching to apply to other characters, you will likely need the UNICODE_CASE flag.
The CASE_INSENSITIVE flag can also be specified using the embedded flag expression (?i).
629

Chapter 25
Using the COMMENTS Flag
When the COMMENTS flag is set, it is possible to include whitespace in a regular expression pattern that is not matched against the test character sequence. In other words, whitespace included in a pattern is ignored, enabling the pattern (and the comments describing the meaning of the pattern’s components) to be displayed in a way that assists a human reader in reading and understanding it.
The # character is used at the beginning of a comment. All characters following the # character are ignored (as far as matching is concerned) by the regular expression engine.
Comments mode can also be enabled using the embedded flag expression (?x).
The following example shows how comments can be used when attempting to match a U.S. Zip code when the Pattern.COMMENTS flag is set.
Try It Out |
Using the COMMENTS Flag |
1.Type the following code into a text editor:
import java.util.regex.*;
public class MatchZipComments{
public static void main(String args[]) throws Exception{
String myTestString = “12345-1234 23456 45678 01234-1234”;
//Attempt to match US Zip codes.
//The pattern matches five numeric digits followed by a hyphen followed by four numeric digits.
String myRegex = “\\d{5} “ +
“# Matches five numeric digits” + “\n(-\\d{4})* “ +
“# Matches four numeric digits and a hyphen, all of which are optional”;
Pattern myPattern = Pattern.compile(myRegex, Pattern.COMMENTS);
Matcher myMatcher = myPattern.matcher(myTestString);
String myMatch = “”;
System.out.println(“The test string was ‘“ + myTestString + “‘.”); System.out.println(“The pattern was ‘\\d{5}-\\d{4}’.”);
while (myMatcher.find())
{
myMatch = myMatcher.group();
System.out.println(“A match ‘“ + myMatch + “‘was found.”); } // end while
if (myMatch == “”){
System.out.println(“There were no matches.”);
}// end if
}// end main()
}
630

Regular Expressions in Java
2.Save the code as MatchZipComments.java. To compile it at the command line, type javac MatchZipComments.java.
3.Run the code. At the command line, type java MatchZipComments, and inspect the results, as shown in Figure 25-4.
Figure 25-4
How It Works
The variable myTestString is assigned a string that contains four character sequences that could be U.S. Zip codes:
String myTestString = “12345-1234 23456 45678 01234-1234”;
Conventional Java comments can be used to indicate the purpose of the regular expression:
// Attempt to match US Zip codes.
Similarly, conventional Java comments can be used to specify how the pattern is constructed:
// The pattern matches five numeric digits followed by a hyphen followed by four
numeric digits.
The Pattern.COMMENTS flag is set in the following statement; therefore, the value of the myRegex variable can be written across several lines, with comments interwoven between the components of the regular expression pattern. Notice that the comments follow the # character:
String myRegex = |
|
|
“\\d{5} “ + |
|
|
“# Matches |
five |
numeric digits” + |
“\n(-\\d{4})* “ |
+ |
|
“# Matches |
four |
numeric digits and a hyphen, all of which are optional”; |
|
|
|
When the value of the variable myPattern is assigned the result of the Pattern class’s compile() method, the second argument of the compile() method, Pattern.COMMENTS, sets the COMMENTS flag. When the COMMENTS flag is set, whitespace inside the pattern is ignored, and characters from the # character to the next-line terminator character are treated as comments:
Pattern myPattern = Pattern.compile(myRegex, Pattern.COMMENTS);
Matching takes place against the myTestString variable using the myPattern object’s matcher() method:
Matcher myMatcher = myPattern.matcher(myTestString);
631

Chapter 25
There are four matches in the myTestString variable. Character sequences 12345-1234 and 01234-1234 match when the optional part of the pattern, (-\d{4})*, matches once; and 23456 and 45678 match when (-\d{4})* matches zero occurrences of the pattern.
The DOTALL Flag
By default, the . (period) metacharacter matches any character except a line terminator. In Java regular expressions, the term line terminator refers to those characters (or combinations of characters) specified in the following list. When the DOTALL flag is set, the . (period) metacharacter matches all characters, including line terminators:
\n — A newline (linefeed) character
\r\n — A carriage-return character followed immediately by a newline character
\r — A carriage return not followed by a newline character
\u0085 — A next-line character
\u2028 — A line-separator character
\u2029 — A paragraph-separator character
The DOTALL mode can also be specified using the embedded flag expression (?s).
The MULTILINE Flag
By default, the positional metacharacters ^ and $, respectively, match the position just before the first character in the test character sequence and the position just after the last character in the character sequence. When MULTILINE mode is specified, the ^ metacharacter matches the position just before the first character on each line, and the $ metacharacter matches the position just after the final character (ignoring line terminators) on each line.
The MULTILINE flag can also be specified using the embedded flag expression (?m).
The UNICODE_CASE Flag
The CASE_INSENSITIVE flag causes matching of U.S. ASCII characters to be carried out in a caseinsensitive way. To use case-insensitive matching with other characters, the UNICODE_CASE flag is set. It is likely that using the UNICODE_CASE flag will impose a performance penalty, so you should use it only when it is essential to the purpose of the regular expression.
The UNICODE_CASE flag can also be specified using the embedded flag expression (?u).
The UNIX_LINES Flag
The UNIX_LINES flag is set when you are dealing with multiline text originating from a Unix or related operating system where only the \n line terminator is used. Only \n is recognized as affecting the behavior of the . (period), ^ (caret), and $ (dollar) metacharacters.
The UNIX_LINES flag can also be specified using the embedded flag expression (?d).
632