
Advanced Wireless Networks - 4G Technologies
.pdf

350 MOBILITY MANAGEMENT
on the performance of the scheme. Increasing the MLC window size, by including more rings, increases the likelihood of supporting the required QoS if the mobile moves along
the predicted direction ˜ . On the other hand, if the mobile deviates from the predicted
D (t)
direction, increasing the MLC window size may not ensure the continued support of the call, as the mobile unit may move out from the MLC. A possible approach is to reward users who move within the predicted direction by increasing their MLC window size up to a maximum Rmax. The value of Rmax depends on the value of the guarantee period TG . Higher values of TG result in larger values of Rmax.
When the user deviates from the estimated direction, the MLC window size is decreased by an amount proportional to the degree of deviation. As a result, support of the predictable users’ QoS requirements can be achieved with high probability, whereas users with unpredictable behavior do not unnecessarily overcommit the network resources. The algorithm dynamically updates the size of the MLC window based on the observed movement patterns of the mobile users. If t is the measure of the mobile’s deviation with respect to the
estimated direction at time , defined as t+1 = β t + (1 − β)| ˜ t − t | with 0 < β < 1 t D
D
and 0 equal to zero, the MLC window size WMLC at time t can be defined as follows:
|
t |
2 |
|
|
WLMC = min Rmax, 1 − |
Rmax |
(11.37) |
||
π |
The MLC window size is recalculated at every handoff; therefore, the window size shrinks and grows depending on the mobile’s behavior.
The method can be easily extended to cellular network with cells of different sizes. When a cellular network has cells of different sizes, the definition of rings is different. The rings are imaginary circles centered at the current cell. The radius of the first ring R1 is equal to the distance from the center of the current cell to the center of the neighboring cell whose center is farthest away. Consequently, the radius of a ring i, where i = 1, 2, . . . , is equal i × R1. Any cell that has its center within the boundaries of a ring is considered in that ring.
The time of arrival and residence time of the mobile can be estimated for each MLC cell. Based on these estimates, the feasibility of supporting the requested level of timed-QoS guarantees within the residence time can then be verified. The cell residence time within cell j for a mobile unit currently in cell i is characterized by three parameters, namely, expected earliest arrival time [TEA(i, j)], expected latest arrival time [TLA(i, j)], and expected latest departure time [TLD(i, j)]. Consequently, [TEA(i, j), TLD(i, j) ] is the expected residence time of the mobile unit within cell j. This interval is referred to as the resource reservation interval (RRI), while the interval [TEA(i, j), TLA(i, j)] is referred to as the resource leasing interval (RLI). Resources are reserved for the entire duration of RRI. However, if the mobile does not arrive to cell before RLI expires, all resources are released and the reservation is canceled. This is necessary to prevent mobile units from holding resources unnecessarily.
In order to derive these time intervals, one can adopt the method used in the SC and consider all possible paths from the current cell to each cell in the cluster [78]. This method can be complex, since there are many possible paths that a mobile unit may follow to reach a cell. The approach taken in the MLC model is based on the concept of most likely paths [84].
Consider a mobile unit u, currently located at cell m, and let CmMLC(u) denote its MLC. Define G = (V, E) to be a directed graph, where V is a set of vertices and E a set of edges. A vertex vi V represents MLC cell i. For each cell i and j in CmMLC(u), an edge (vi , v j )



MOBILITY PREDICTION IN PICOAND MICROCELLULAR NETWORKS |
|
353 |
|||||||||||||||||||||||
Appendix for details) as |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8R |
|
|
|
sin |
β2 − ω2 |
|
− |
sin |
|
β1 − ω2 |
|
|
|
|
|||||||||
|
(ω2 − ω1)(β2 − β1) |
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
2 |
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|||||||
|
− |
sin |
β2 − ω1 |
|
+ |
sin |
β1 − ω1 |
|
|
|
for |
β |
1 |
≥ |
ω |
2 |
|||||||||
|
|
2 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|||||||
dI (m, k, n) = E[Y ] = |
8R |
|
|
|
sin |
ω1 − β2 |
|
− |
sin |
|
|
ω1 − β1 |
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
(ω2 − ω1) (β2 − β1) |
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
2 |
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|||||||
|
− |
sin |
ω2 − β1 |
|
+ |
sin |
ω2 − β1 |
|
|
|
for |
β |
2 |
≤ |
ω |
1 |
|||||||||
|
|
2 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(11.41) |
The mean distance in the last cell in the path is derived as follows:
dL(m, k) = max d (m, k, q) q adjacent to k, q =m |
(11.42) |
The mean distance in the cell k when the path makes a loop within cell k is derived as follows:
dLP(m, k, n) = 2do (k, n) |
(11.43) |
Similarly, the expected latest departure time TLD(i, j) from cell j can be computed as:
¯ |
(11.44) |
TLD(i, j) = TLA(i, j) + d(m, k)/Smin(k) |
The estimates of TEA(i, j), TLD(i, j) and TLD(i, j) for a mobile u currently located at cell i are used to compute RLI and RRI for each cell j CiMLC(u). The CAC uses these values
to verify the feasibility of supporting u’s call in each cell j CiMLC(u).
A good agreement between the results of the analytical model of the distance, based on Equations (11.40) and (11.41), and the simulation results of mobile units traveling along the same path, is demonstrated in Aljadhai and Znati: [84].
11.4.2.2 Performance example
The MLC CAC scheme is compared with the SC scheme based on the following assumptions [78, 84].
(1)Each cell covers 1 km along a highway. The highway is covered by 10 cells. Mobile units can appear anywhere along a cell with equal probability.
(2)Call holding time is exponentially distributed with mean TH = 130 and 180 s.
(3)Total bandwidth of each cell is 40 bandwidth units (BUs). Three types of calls are
used: voice, audio, and video, requiring Bvoice = 1 BU, Baudio = 5 BUs and Bvideo = 10 BUs, respectively. The probabilities of each type are, Pvoice = 0.7, Paudio = 0.2, and Bvideo = 0.1.
(4)Mobile units may have one of three different speeds: 70, 90 or 105 km/h. The probability of each speed is 1/3.
(5)In the SC scheme, the time is quantized in time interval of length 10 s.


356 MOBILITY MANAGEMENT
where ψ is defined as |
|
|
|
|
|
|
|
|
|
|
|
ψi |
= |
π − (β − ωi ), |
β ≥ ω2 |
|
= |
|
(11.48) |
||||
|
π |
− |
(ω j |
− |
β), |
β < ω1 |
and i |
j. |
|
||
|
|
|
|
|
If Y is the distance traveled from E to X, as in Figure 11.33 then, Y becomes Y = 2R cos φ and gives in Equation (11.47) the following four cases.
Case 1: ψ2/2 > ψ1/2 ≥ 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y < 2R cos |
|
ψ2 |
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
2arco cos |
y |
− ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
FY (y | β) = |
|
|
|
|
|
|
|
|
|
|
|
|
ψ2 |
|
|
|
|
|
|
|
|
|
|
|
ψ1 |
|
||||||||||||
1 |
− |
2R |
, |
|
2R cos |
|
|
|
|
≤ |
y |
≤ |
2R cos |
|
||||||||||||||||||||||||
|
ψ2 − ψ1 |
|
|
|
|
|
|
|
|
2 |
|
|
2 |
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
1, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y > 2R cos |
|
ψ1 |
|
|
. |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
(11.49) |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
The PDF of y is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
, |
|
2R cos |
|
ψ2 |
≤ y ≤ 2R cos |
ψ1 |
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
2 |
|
|
||||||||||||||||
fY (y | β) = |
|
(ψ2 − ψ1) R2 − |
y 2 |
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
elsewhere |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
The mean distance E[Y | β] is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(11.50) |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
2R cos(ψ1/2) |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
E[Y | β] = |
|
|
|
|
|
|
y · |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dy |
(11.51) |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
R2 − |
|
|
y |
|
2 |
|
|||||||||||||||||||||
|
|
|
|
|
2R cos(ψ2/2) |
|
|
|
(ψ2 − ψ1) |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
= |
|
|
4R |
|
sin |
|
ψ2 |
− sin |
|
ψ1 |
|
|
|
|
|
|
|
|
|
(11.52) |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
ψ2 − ψ1 |
|
2 |
2 |
|
|
|
|
|
|
|
|
|
The mean distance E [Y ] for cell id(m, i, j) for a mobile path entering cell i from cell m and exiting cell i to cell j is
β2
d(m, i, j) = E[Y ] = E[Y | β] fβ (β) dβ
|
|
β1 |
|
|
|
|
|
|
|
(11.53) |
||
|
β2 |
|
|
|
|
|
|
|
|
|||
|
1 |
|
|
4R |
|
|
|
|
|
|
|
|
= |
|
· |
|
sin |
ψ2 |
− sin |
ψ1 |
|||||
|
|
|
|
|
|
|
|
|
||||
β1 |
β2 − β1 |
ψ2 − ψ1 |
2 |
2 |
|

APPENDIX: DISTANCE CALCULATION IN AN INTERMEDIATE CELL |
357 |
|
|
|
|
|
|
8R |
|
|
|
|
|
|
|
|
|
sin |
|
β2 − ω2 |
|
|
− |
|
sin |
β1 − ω1 |
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
(ω2 − ω1) (β2 − β1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
− |
sin |
β2 − ω1 |
|
|
|
+ |
sin |
β1 − ω2 |
|
|
|
|
|
|
|
β |
1 |
≥ |
ω |
2 |
|
|
|
|
|
|
||||||||||||||||||||||
|
= |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(11.54) |
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
8R |
|
|
|
|
|
|
|
|
sin |
ω1 − β2 |
|
|
|
− |
sin |
|
|
|
ω1 − β1 |
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
(ω2 − ω1)(β2 − β1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
− |
sin |
ω2 − β1 |
|
|
|
+ |
sin |
ω2 − β1 |
|
|
|
|
|
|
|
β |
2 |
≤ |
ω |
1 |
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
Case 2: ψ1/2 < ψ2/2 ≤ 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y < 2R cos |
|
ψ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
2arc cos |
y |
− ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
FY (y | β) = |
|
|
|
|
|
|
|
|
|
|
|
ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ1 |
|||||||||||||||||||||||||
1 |
− |
2R |
, |
|
|
2R cos |
|
|
|
≤ |
|
y |
≤ |
2R cos |
|
|||||||||||||||||||||||||||||||||||||
|
ψ2 − ψ1 |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
2 |
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
1, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y > 2R cos |
|
ψ2 |
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
(11.55) |
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
The PDF of y is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
−1 |
|
|
|
|
|
|
|
|
, |
|
2R cos |
ψ2 |
|
≤ |
|
y |
≤ |
|
2R cos |
ψ1 |
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
2 |
|
|
||||||||||||||||||||||||||
fY (y | β) = |
|
(ψ2 − ψ1) R2 |
− |
|
y 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elsewhere |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
The mean distance E[Y | β] is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(11.56) |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
2R cos(ψ2/2) |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
E[Y | β] = |
|
|
|
|
|
|
|
y · |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dy |
|
|
|
(11.57) |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
(ψ1 − ψ2) |
|
R2 |
− |
|
|
y |
2 |
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
2R cos(ψ1/2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
4R |
|
sin |
|
|
ψ2 |
|
|
|
|
|
|
|
ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
− sin |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(11.58) |
|||||||||||||||||||
|
|
|
|
|
ψ2 − ψ1 |
|
|
|
2 |
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The mean distance E [Y ] for cell id(m, i, j) for a mobile path entering cell i from cell m and exiting cell i to cell j is
β2
d(m, i, j) = E[Y ] = E[Y | β] fβ (β)dβ
|
|
β1 |
|
|
|
|
|
|
(11.59) |
||
|
β2 |
|
|
|
|
|
|
|
|||
|
1 |
|
4R |
|
|
|
|
|
|
|
|
= |
|
· |
sin |
ψ2 |
− sin |
ψ1 |
|||||
β1 |
β2 − β1 |
ψ2 − ψ1 |
|
2 |
|
2 |
|