- •Table of Contents
- •Dedication
- •Foreword
- •Introduction
- •What Is FreeBSD?
- •How Did FreeBSD Get Here?
- •The BSD License: BSD Goes Public
- •The Birth of Modern FreeBSD
- •FreeBSD Development
- •Committers
- •Contributors
- •Users
- •Other BSDs
- •NetBSD
- •OpenBSD
- •Other UNIXes
- •Solaris
- •Linux
- •IRIX, HPUX, etc.
- •FreeBSD's Strengths
- •Portability
- •Power
- •Simplified Software Management
- •Optimized Upgrade Process
- •Filesystem
- •Who Should Use FreeBSD
- •FreeBSD as Your Desktop
- •Who Should Run Another BSD
- •Who Should Run a Proprietary Operating System
- •How to Read This Book
- •What Must You Know?
- •How to Think About UNIX
- •Channels of Communication
- •Working with Channels
- •The Command Line
- •Chapter 1: Installation
- •FreeBSD Hardware
- •Processor
- •Memory (RAM)
- •Hard Drives
- •Downloading FreeBSD
- •Installing by FTP
- •Other FTP Install Information
- •Hardware Setup
- •Actually Installing FreeBSD
- •Configuring the Kernel for ISA Cards
- •Sysinstall: The Ugly FreeBSD Installer
- •Disk Usage
- •Partitioning
- •Root
- •Swap Space
- •Swap Splitting
- •/var, /usr, and /home
- •A Second Hard Drive
- •Soft Updates
- •Block Size
- •What to Install
- •Installation Media
- •Committing
- •Root Password
- •Adding Users
- •Time Zone
- •Mouse
- •Configuring Network Cards
- •Xfree86
- •Software
- •Restart
- •A Note on Editors
- •Chapter 2: Getting More Help
- •Why Not Mail First?
- •The FreeBSD Attitude
- •Man Pages
- •The FreeBSD Manual
- •Man Page Headings
- •The FreeBSD Documentation
- •The Mailing List Archives
- •Other Web Sites
- •Checking the Handbook/FAQ
- •Checking the Man Pages
- •Checking the Mailing List Archives
- •Using Your Answer
- •Mailing for Help
- •Chapter 3: Read This Before You Break Something Else! (Backup and Recovery)
- •Overview
- •System Backups
- •Tape Devices
- •How to Read Dmesg.boot
- •Controlling Your Tape Drive
- •Device Nodes
- •Using the TAPE Variable
- •The mt Command
- •Backup Programs
- •Dump/Restore
- •Restoring from an Archive
- •Checking the Contents of an Archive
- •Extracting Data from an Archive
- •Restoring Interactively
- •Recording What Happened
- •Revision Control
- •Getting Older Versions
- •Breaking Locks
- •Viewing Log Messages
- •Reviewing a File's Revision History
- •Ident and ident Strings
- •Going Further
- •The Fixit Disk
- •Chapter 4: Kernel Games
- •Overview
- •What Is the Kernel?
- •Configuring Your Kernel
- •Sysctl
- •Changing Sysctls
- •Setting Sysctls at Boot
- •Kernel Configuration with Loader.conf
- •Manually Configuring the Loader
- •Viewing Loaded Modules
- •Loading and Unloading Modules
- •Customizing the Kernel
- •Preparation
- •Your Backup Kernel
- •Editing Kernel Files
- •Basic Options
- •Multiple Processors
- •Device Entries
- •Building Your Kernel
- •Troubleshooting Kernel Builds
- •Booting an Alternate Kernel
- •Adding to the Kernel
- •LINT
- •Fixing Errors with Options
- •Tweaking Kernel Performance
- •Sharing Kernels
- •Chapter 5: Networking
- •Overview
- •Network Layers
- •The Physical Layer
- •The Physical Protocol Layer
- •The Logical Protocol Layer
- •The Application Layer
- •The Network in Practice
- •Mbufs
- •What Is a Bit?
- •Ethernet
- •Broadcasting
- •Address Resolution
- •Hubs and Switches
- •Netmasks
- •Netmask Tricks
- •Hexadecimal Netmasks
- •Unusable IP Addresses
- •Routing
- •Network Ports
- •Connecting to an Ethernet Network
- •Multiple IP Addresses on One Interface
- •Using Netstat
- •Chapter 6: Upgrading FreeBSD
- •Overview
- •FreeBSD Versions
- •Release
- •Snapshots
- •Security Updates
- •Which Release Should You Use?
- •Upgrade Methods
- •Upgrading via Sysinstall
- •Upgrading via CVSup
- •Simplifying the CVSup Upgrade Process
- •Building a Local CVSup Server
- •Controlling Access
- •Authentication
- •Combining Authentication and Access
- •Chapter 7: Securing Your System
- •Overview
- •Who Is the Enemy?
- •Script Kiddies
- •Disaffected Users
- •Skilled Attackers
- •FreeBSD Security Announcements
- •Subscribing
- •What You'll Get
- •Installation Security Profiles
- •Moderate
- •Extreme
- •Root, Groups, and Permissions
- •The root Password
- •Groups of Users
- •Primary Group
- •Some Interesting Default Groups
- •Group Permissions
- •Changing Permissions
- •Changing File Ownership
- •Assigning Permissions
- •File Flags
- •Viewing a File's Flags
- •Setting Flags
- •Securelevels
- •Setting Securelevels
- •Which Securelevel Do You Need?
- •What Won't Securelevel and File Flags Do?
- •Living with Securelevels
- •Programs That Can Be Hacked
- •Putting It All Together
- •Chapter 8: Advanced Security Features
- •Traffic Control
- •Default Accept vs. Default Deny
- •TCP Wrappers
- •Configuring Wrappers
- •Daemon Name
- •The Client List
- •Putting It All Together
- •Packet Filtering
- •IPFilter
- •IPFW
- •Default Accept and Default Deny in Packet Filtering
- •Basic Concepts of Packet Filtering
- •Implementing IPFilter
- •Configuring Your Server to Use Jail
- •Configuring Your Kernel to Use Jail
- •Client Setup
- •Final Jail Setup
- •Starting the Jail
- •Managing Jails
- •Shutting Down a Jail
- •Monitoring System Security
- •If You're Hacked
- •Chapter 9: Too Much Information About /etc
- •Overview
- •Varieties of /etc Files
- •Default Files
- •/etc/defaults/rc.conf
- •/etc/adduser.conf
- •/etc/crontab
- •/etc/dhclient.conf
- •/etc/fstab
- •/etc/hosts.allow
- •/etc/hosts.equiv
- •/etc/hosts.lpd
- •/etc/inetd.conf
- •/etc/locate.rc
- •/etc/login.access
- •/etc/login.conf
- •Specifying Default Environment Settings
- •/etc/mail/mailer.conf
- •/etc/make.conf and /etc/defaults/make.conf
- •/etc/master.passwd
- •/etc/motd
- •/etc/mtree/*
- •/etc/namedb/*
- •/etc/newsyslog.conf
- •/etc/passwd
- •/etc/periodic.conf and /etc/defaults/periodic.conf
- •/etc/printcap
- •Working with Printcap Entries
- •/etc/profile
- •/etc/protocols
- •/etc/rc.conf and /etc/defaults/rc.conf
- •/etc/resolv.conf
- •/etc/security
- •/etc/services
- •/etc/shells
- •/etc/spwd.db
- •/etc/sysctl.conf
- •/etc/syslog.conf
- •Chapter 10: Making Your System Useful
- •Overview
- •Making Software
- •The Pain and Pleasure of Source Code
- •Debugging
- •The Ports and Packages System
- •Ports
- •Finding Software
- •Legal Restrictions
- •Using Packages
- •Installing via FTP
- •What Does a Package Install?
- •Uninstalling Packages
- •Package Information
- •Controlling Pkg_add
- •Package Problems
- •Forcing an Install
- •Using Ports
- •Installing a Port
- •Using Make Install
- •Uninstalling and Reinstalling
- •Cleaning Up with Make Clean
- •Building Packages
- •Changing the Install Path
- •Setting Make Options Permanently
- •Upgrading Ports and Packages
- •Upgrading the Ports Collection
- •Ports Collection Upgrade Issues
- •Checking Software Versions
- •Hints for Upgrading
- •Chapter 11: Advanced Software Management
- •Overview
- •Startup and Shutdown Scripts
- •Typical Startup Script
- •Using Scripts to Manage Running Programs
- •Managing Shared Libraries
- •Ldconfig
- •Running Software from the Wrong OS
- •Recompilation
- •Emulation
- •ABI Implementation
- •Foreign Software Libraries
- •Installing and Enabling Linux Mode
- •Identifying Programs
- •What Is Linux_base?
- •Adding to Linux_base
- •Configuring Linux Shared Libraries
- •Installing Extra Linux Packages as RPMs
- •What Is SMP?
- •Kernel Assumptions
- •FreeBSD 3.0 SMP
- •FreeBSD 5 SMP
- •Using SMP
- •SMP and Upgrades
- •Chapter 12: Finding Hosts With DNS
- •How DNS Works
- •Basic DNS Tools
- •The Host Command
- •Getting Detailed Information with Dig
- •Looking Up Hostnames with Dig
- •More Dig Options
- •Configuring a DNS Client: The Resolver
- •Domain or Search Keywords
- •The Nameserver List
- •DNS Information Sources
- •The Hosts File
- •The Named Daemon
- •Zone Files
- •A Real Sample Zone
- •named.conf
- •/var/named/master/absolutebsd.com
- •Making Changes Work
- •Starting Named at Boottime
- •Checking DNS
- •Named Configuration Errors
- •Named Security
- •Controlling Information Order
- •More About BIND
- •Chapter 13: Managing Small Network Services
- •Bandwidth Control
- •Configuring IPFW
- •Reviewing IPFW Rules
- •Dummynet Queues
- •Directional Traffic Shaping
- •Certificates
- •Create a Request
- •Being Your Own CA
- •Testing SSH
- •Enabling SSH
- •Basics of SSH
- •Creating Keys
- •Confirming SSH Identity
- •SSH Clients
- •Connecting via SSH
- •Configuring SSH
- •System Time
- •Setting the Time Zone
- •Network Time Protocol
- •Ntpdate
- •Ntpd
- •Inetd
- •/etc/inetd.conf
- •Configuring Programs in Inetd
- •Inetd Security
- •Starting Inetd
- •Changing Inetd's Behavior
- •Chapter 14: Email Services
- •Email Overview
- •Where FreeBSD Fits In
- •The Email Protocol
- •Email Programs
- •Who Needs Sendmail?
- •Replacing Sendmail
- •Installing Postfix
- •Pieces of Postfix
- •Configuring Postfix
- •Email Aliases
- •Email Logging
- •Virtual Domains
- •Postfix Commands
- •Finding the Correct Mail Host
- •Undeliverable Mail
- •Installing POP3
- •Testing POP3
- •POP3 Logging
- •POP3 Modes
- •Qpopper Preconfiguration Questions
- •Default Qpopper Configuration
- •APOP Setup
- •Configuring Pop3ssl
- •Qpopper Security
- •Chapter 15: Web and FTP Services
- •Overview
- •How a Web Server Works
- •The Apache Web Server
- •Apache Configuration Files
- •Configuring Apache
- •Controlling Apache
- •Virtual Hosting
- •Tweaking Virtual Hosts
- •.NET on FreeBSD
- •Installing the SSCLI
- •FTP Security
- •The FTP Client
- •The FTP Server
- •Chapter 16: Filsystems and Disks
- •Device Nodes
- •Hard Disks and Partitions
- •The /etc/fstab File
- •Disk Basics
- •The Fast File System
- •Vnodes
- •FFS Mount Types
- •FFS Mount Options
- •What's Mounted Now?
- •Dirty Disks
- •Fsck
- •Mounting and Unmounting Disks
- •Mounting Standard Filesystems
- •Mounting with Options
- •Mounting All Standard Filesystems
- •Mounting at Nonstandard Locations
- •Unmounting
- •Soft Updates
- •Enabling Soft Updates
- •IDE Write Caching and Soft Updates
- •Virtual Memory Directory Caching
- •Mounting Foreign Filesystems
- •Using Foreign Mounts
- •Foreign Filesystem Types
- •Mount Options and Foreign Filesystems
- •Filesystem Permissions
- •Removable Media and /etc/fstab
- •Creating a Floppy
- •Creating an FFS Filesystem
- •The Basics of SCSI
- •SCSI Types
- •SCSI Adapters
- •SCSI Buses
- •Termination and Cabling
- •SCSI IDs and LUNs
- •FreeBSD and SCSI
- •Wiring Down Devices
- •Adding New Hard Disks
- •Creating Slices
- •Creating Partitions
- •Configuring /etc/fstab
- •Installing Existing Files onto New Disks
- •Temporary Mounts
- •Moving Files
- •Stackable Mounts
- •Chapter 17: RAID
- •Hardware vs. Software RAID
- •RAID Levels
- •Software RAID
- •Vinum Disk Components
- •Vinum Plex Types
- •Preparing Vinum Drives
- •Dedicating Partitions to Vinum
- •Configuring Vinum
- •Concatenated Plex
- •Removing Vinum Configuration
- •Striped Volumes
- •Mirrored Volumes
- •Starting Vinum at Boot
- •Other Vinum Commands
- •Replacing a Failed Mirrored Plex
- •Chapter 18: System Performance
- •Overview
- •Computer Resources
- •Disk Input/Output
- •Network Bandwidth
- •CPU and Memory
- •Using Top
- •Memory Usage
- •Swap Space Usage
- •CPU Usage
- •When Swap Goes Bad
- •Paging
- •Swapping
- •Are You Swapping or Paging?
- •Fairness in Benchmarking
- •The Initial Test
- •Using Both CPUs
- •Directory Caching
- •Moving /usr/obj
- •Lessons Learned
- •Chapter 19: Now What's It Doing?
- •Status Mails
- •Forwarding Reports
- •Logging with Syslogd
- •Facilities
- •Levels
- •Syslog.conf
- •Wildcards
- •Rotating Logs with Newsyslog.conf
- •Reporting with SNMP
- •Basics of SNMP
- •MIBs
- •Snmpwalk
- •Specific Snmpwalk Queries
- •Translating Between Numbers and Names
- •Setting Up Snmpd
- •Index Numbers
- •Configuring MRTG
- •Sample mrtg.cfg Entry
- •Testing MRTG
- •Tracking Other System Values
- •Monitoring a Single MIB
- •Customizing MRTG
- •MRTG Index Page
- •Sample MRTG Configurations
- •Chapter 20: System Crashes and Panics
- •What Causes Panics?
- •What Does a Panic Look Like?
- •Responding to a Panic
- •Prerequisites
- •Crash Dump Process
- •The Debugging Kernel
- •kernel.debug
- •Dumpon
- •Savecore
- •Upon a Crash
- •Dumps and Bad Kernels
- •Using the Dump
- •Advanced Kernel Debugging
- •Examining Lines
- •Examining Variables
- •Apparent Gdb Weirdness
- •Results
- •Vmcore and Security
- •Symbols vs. No Symbols
- •Serial Consoles
- •Hardware Serial Console
- •Software Serial Console
- •Changing the Configuration
- •Using a Serial Console
- •Serial Login
- •Emergency Logon Setup
- •Disconnecting the Serial Console
- •Submitting a Problem Report
- •Problem Report System
- •What's in a PR?
- •Filling Out the Form
- •PR Results
- •Chapter 21: Desktop FreeBSD
- •Overview
- •Accessing File Shares
- •Prerequisites
- •Character Sets
- •Kernel Support for CIFS
- •SMB Tools
- •Configuring CIFS
- •Minimum Configuration: Name Resolution
- •Other smbutil Functions
- •Mounting a Share
- •Other mount_smbfs Options
- •Sample nsmb.conf Entries
- •CIFS File Ownership
- •Serving Windows File Shares
- •Accessing Print Servers
- •Running a Local Lpd
- •Printer Testing
- •Local Printers
- •X: A Graphic Interface
- •X Prerequisites
- •X Versions
- •Configuring X
- •Making X Look Decent
- •Desktop Applications
- •Web Browsers
- •Email Readers
- •Office Suites
- •Music
- •Graphics
- •Desk Utilities
- •Games
- •Afterword
- •Overview
- •The Community
- •What Can You Do?
- •Getting Things Done
- •Second Opinions
- •Appendix: Some Useful SYSCTL MIBs
- •List of Figures
- •Chapter 1: Installation
- •Chapter 5: Networking
- •Chapter 6: Upgrading FreeBSD
- •Chapter 19: Now What's It Doing?
- •List of Tables
- •Chapter 4: Kernel Games
- •Chapter 5: Networking
- •Chapter 8: Advanced Security Features
- •Chapter 9: Too Much Information About /etc
- •List of Sidebars
- •Chapter 15: Web and FTP Services
Reviewing IPFW Rules
To see your IPFW rules, run ipfw list:
...............................................................................................
# ipfw list
00100 pipe 1 ip from 192.168.99.100 80 to any
65535 allow ip from any to any
#
...............................................................................................
This listing shows our IPFW rule directing traffic to our dummynet rule. It doesn't show the dummynet rule, however. Pipes are stored in a separate list.
To view the pipes, run ipfw pipe list:
...............................................................................................
# ipfw pipe list |
|
|
v 00001: w 128.000 Kbit/s 0 |
ms 50 sl. 1 queues (1 buckets) droptail |
|
|
mask: 0x00 0x00000000/0x0000 –> 0x00000000/0x0000 |
|
BKT |
Prot ___Source IP/port____ ____Dest. IP/port____ Tot_pkt/bytes Pkt/Byte Drp |
|
0 |
tcp x 192.168.99.100/80 |
y 163.62.168.2/2415 128050681 35518324182 0 0 50486587 |
# |
|
|
...............................................................................................
Note The output from ipfw pipe list is far wider than 80 characters. If possible, use a terminal emulator and make your window very, very wide.
These four lines describe both our dummynet rule and the associated IPFW rule. Much of this is in−depth information that we don't need to understand—it simply displays dummynet's heritage as a traffic−problem simulation tool. The first entry (v) is the dummynet rule number, followed by the rule on how dummynet permits traffic (w). The next interesting item is the source IP address (x)—in this case, our Web server. At the moment I took this snapshot, one particular destination IP address (y) is having traffic to it throttled.
Dummynet Queues
Dummynet works by putting packets in a queue, and then handling these queued packets in order. If you're trying to throttle a high−traffic site, this queue can fill up, so if your Web server starts occasionally locking up for a few seconds after you implement dummynet, you're probably overflowing the packet queue.
To fix this problem, modify your pipe rule to include a queue size, and increase it to the largest possible queue size of 1000KB:
...............................................................................................
ipfw add pipe 1 config bw 128Kbit/s queue 1000Kbytes
...............................................................................................
This larger queue uses kernel memory, however, so don't go slapping it in willy−nilly.
297
Directional Traffic Shaping
One thing to remember is that you cannot throttle incoming traffic. If someone posts a bootleg copy of the next Star Wars movie on your Web server, you're going to have a truly ridiculous number of incoming requests a second. No amount of configuration can prevent 30 million people clicking on a link to request pages from your server. The best you can do is restrict how you respond to these requests. This means that all you can do is limit your responses by throttling your outbound connections. In most cases this is okay, since, after all, you're the one serving Web pages or sending mail!
If you use a dummynet rule that tries to control incoming traffic, you'll slow down connections without really affecting incoming traffic at all. As a result, you'll build up connection queues on your server, and only hurt yourself. If you're being flooded with traffic, either refuse this sort of traffic entirely (see Chapter 8), find the demanded content and remove it, or contact your ISP for help.
Public−Key Encryption
Many security features in server daemons rely upon public−key encryption to ensure confidentiality, integrity, and authenticity. Many different Internet services also use public−key encryption. You need to have a basic grasp of public−key encryption to be able to run services like secure Web pages (https) and secure POP3 mail (pop3ssl).
Note If you're already familiar with public−key encryption, you can probably skip this section.
Encryption systems use a key to transform messages from readable versions (cleartext) to and from encoded versions (ciphertext). Although the words cleartext and ciphertext include the word text, they aren't restricted to text; they also include graphics files, binaries, and any other data you might send. All cryptosystems have three main purposes: to maintain integrity and confidentiality and to ensure nonrepudiation. Integrity means that the message has not been tampered with. Confidentiality means that the message can only be read by the intended audience. And nonrepudiation means that the author cannot later claim that he or she didn't write that message.
Older ciphers relied on a single key, and if you had the key, you could both encrypt and decrypt messages. (You might have had to jump through a lot of hoops to transform the message, as with the Enigma engine that drove the Allies nuts during World War Two, but the key made it possible.) A typical example is any code that requires a key or a password. The one−time message pads popularized in spy movies are archetypal single−key ciphers.
Unlike single−key ciphers, public−key (or asymmetric) encryption systems use two keys: both a private and a public one. Messages are encrypted with one key and decrypted with the other. (The mathematics to explain this are really quite hairy, but it does work—the system is based upon the behavior of really, really, really large numbers.) Generally, the key owner keeps the private key secret, but the public key is handed out to the world at large, for anyone's use. The key owner uses the private key, while everyone else uses the public key. The key owner can encrypt messages that anyone can open, while anyone in the public can send a message that only the key owner can read.
Public−key cryptography fills our need for integrity, confidentiality, and nonrepudiation nicely. If an author wants anyone to be able to read his message, while ensuring that it isn't tampered with, he can encrypt the message with his private key, and anyone with the public key can decrypt and read
298
the message. (Tampering with the encoded message would render it illegible.)
Encrypting messages this way also guarantees that the author has the private key. If an author wants to send a message that can only be read by its intended reader, she can encrypt it with the reader's public key, but only the person with the matching private key can read it.
This system works well as long as the private key is kept private. Once that private key is stolen, lost, or made public, it's useless. A careless person who has his private key stolen could even find others signing documents for him. Be careful with your keys, unless you want to learn that someone used your certificate to order half a million dollars' worth of high−end graphics workstations and have them overnighted to an abandoned−house maildrop on the other side of the country![1]
Note Absolute BSD is not an in−depth guide to cryptography. Much of what's in here is a generalization. If you're really, really interested in crypto, check out Bruce Schneier's Applied Cryptography (John Wiley & Sons). Bring a calculator, and a spare brain to use when yours fills up.
Certificates
One interesting note about public−key encryption is that the author and the audience don't have to be people—they can be programs. SSH, the Secure Sockets Layer (SSL) portion of Apache, which is the secure POP3 service, uses public−key encryption, as do many other programs. Public−key cryptography is a major component of the signed certificates used by secure Web sites. When you open Netscape to buy something online, you might not realize that the browser is frantically encrypting and decrypting Web pages behind the scenes. This is why your computer might complain about "invalid certificates"; someone's public key has either expired or has gone bad. (We'll learn more about how to use certificates in Chapter 14 and 15.)
Many companies, such as VeriSign, provide a public−key signing service. These companies are called Certificate Authorities (CAs). Other companies that need a certificate signed provide proof of their identity (such as corporate papers and business records), and these public−key signing companies use their certificate to sign the company's certificate. By signing the certificate, the Certificate Authority says, "I have inspected this person's credentials, and he (or she, or it) is who he claims he is." But they're not guaranteeing anything else: The person can use the certificate to build a Web site that sells fraudulent or dangerous products, or could even use it to encrypt a ransom note. Signed certificates guarantee certain types of technical security, not personal integrity or even unilateral technical security. If someone breaks into the server, you're still in trouble.
Web browsers and other certificate−using software include certificates for the major CAs. When the browser receives a certificate signed by a Certificate Authority, it accepts the certificate. Essentially, the Web browser says, "I trust the Certificate Authority, and the Certificate Authority trusts this company, so I will trust this company." So long as you trust the certificate authority, the process works.
Create a Request
To get a certificate to secure one of your server programs, you need to generate a certificate request. You then submit this request to a central Certificate Authority for signing. The request itself is fairly simple. While the command line is long, you just need to answer a few questions. (Since you will use these commands only once, we won't dissect them; see openssl(1) for more details, if you're interested).
299
Note Your certificate request must be treated as secret because a hacker can use this as a stepping−stone into your network. Be sure that the file can only be read by root!
Let's walk through a certificate request. Enter this verbatim:
...............................................................................................
# openssl req −new −nodes −out req.pem −keyout cert.pem
...............................................................................................
In response you should see this:
Using configuration from /etc/ssl/openssl.cnf Generating a 1024 bit RSA private key
.................++++++
...++++++
writing new private key to 'cert.pem'
−−−−−
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank
For some fields there will be a default value, If you enter '.', the field will be left blank.
−−−−−
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some−State]:MI
...............................................................................................
Enter the two−letter code for the country and state or province you live in (US and MI, respectively, in this example), as shown in bold here. If you don't know the two−letter codes, ask someone who leaves the server room on occasion. (They are also defined in the ISO 3166 standard, so a quick Web search will find it.)
...............................................................................................
Locality Name (eg, city) [ ]:Detroit
...............................................................................................
A simple city name is sufficient for the Locality. If you're in a branch office, you might want to use the city where your headquarters is located.
...............................................................................................
Organization Name (eg, company) [Internet Widgits Pty Ltd]:BlackHelicopters Foundation
Organizational Unit Name (eg, section) [ ]:Network Support
...............................................................................................
The preceding requests are for your company name and the department you're from. If you don't have a company (I don't), just make something up.
...............................................................................................
Common Name (eg, YOUR name) [ ]:magpire.blackhelicopters.org
...............................................................................................
The preceding line is the part that trips up most administrators. The "YOUR" in the text means the server's name, not the admin's name. If you don't put a server name here, the request will be useless.
...............................................................................................
300
Email Address [ ]:mwlucas@blackhelicopters.org
...............................................................................................
Since this is a personal certificate for my own Web server, I don't need to worry about the email address. If this request is for a company, put a generic corporate address here, like webmaster@AbsoluteBSD.com.
...............................................................................................
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password [ ]:RodentsRule
...............................................................................................
This challenge password is also known as a passphrase. Again, this needs to be a secret, because anyone with your passphrase can masquerade as you! The passphrase here isn't a very good one; it doesn't have any non−alphanumeric characters, such as dashes, commas, or exclamation points, and it doesn't even have any numbers mixed in with it. For your real certificate requests (or anything on your network), please use a password that sucks less than this.
...............................................................................................
An optional company name [ ]:
...............................................................................................
By this time you've filled in quite enough company names, I'm sure, so just press ENTER. After doing so, you'll find a file req.pem in your current directory. It should look something like this:
...............................................................................................
−−−−−BEGIN CERTIFICATE REQUEST−−−−− MIICIDCCAYkCAQAwgcAxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJNSTEQMA4GA1UE BxMHRGV0cm9pdDEkMCIGA1UEChMbQmxhY2tIZWxpY29wdGVycyBGb3VuZGF0aW9u MRgwFgYDVQQLEw9OZXR3b3JrIFN1cHBvcnQxJTAjBgNVBAMTHG1hZ3BpcmUuYmxh Y2toZWxpY29wdGVycy5vcmcxKzApBgkqhkiG9w0BCQEWHG13bHVjYXNAYmxhY2to ZWxpY29wdGVycy5vcmcwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANCjXf0h WX/nlKb5Sc9m7Nofvc3Nck5j7XzNnd50UIc93Jj+Egw/KnlrniptpNicvqzQJ6zs 7jOk1uMUMbHfllxU0UtRGfLthCvfstB40ZzdMYUAfAT1r15i7fnaCRagshekel0h deadbeefTCk6mC7OYcsGuqrVuQkEcA/kPDxdAgMBAAGgHzAdBgkqhkiG9w0BCQcx EBMOR2VyYmlsc0FyZUNvb2wwDQYJKoZIhvcNAQEEBQADgYEAwC7lNqZbHFKaOjiw h35gU6TAC8NE0DRLuEulLWClEIPsTK6HHV7KU4uOq42HEunf61dpPaPkG03htoeu y0c5Rjk9F11cvRbBjpajv+T1lxTBGveuhatsn43d9Epi3glrcpueisd87LMxtnht OBf9nz6GaH+2o2BsGxwH3yws5o0=
−−−−−END CERTIFICATE REQUEST−−−−−
...............................................................................................
You'll also find a cert.pem file that looks much like this:
...............................................................................................
−−−−−BEGIN RSA PRIVATE KEY−−−−− MIICXAIBAAKBgQDQo139IVl/55Sm+UnPZuzaH73NzXJOY+18zZ3edFCHPdyY/hIM Pyp5a54qbaTYnL6s0Ces7O4zpNbjFDGx35ZcVNFLURny7YQr37LQeNGc3TGFAHwE 9a9eYu352gkdSbY5YlPr+7K63bRkskwpOpguzmHLBrqq1bkJBHAP5Dw8XQIDAQAB AoGAO8olXC4bdOELo5IbCdmoFJY2EW1HzZkrbLGMBTz1+tvKhPmCeIn9hRBHIkeL jxvUNLfuNssrNBeQEUEvQJcfgk+QW8zq5UV6xin7Rb1JYu+1TzyBt1QMAx99cDEq WW0oqvYIz1IzQq6FA5/J93Kj3yJ7I6NOCs8c9BxYvnjd6WECQQD0ARUKZhwLD7gQ HM3aIMXV7h0nzqj1Ygz2Rw/GEj+eWiam9NDlxIjqCuXAp34rDcyp++ZFX8flOJQ+ yHOt7625AkEA2uUvUhob0vTAFBofrFHigRQRD8YFDbXIPLtrXxqAmuD1SyABBgBy yGpsmXwdBP/lxR1xu4n+Mu2KVPiNZpZ1xQJASlNGEHvYEPqBy86qWcZf3PGCSgzm ZJCweBhfUqteW6MEYRjzxPmf5wLYx119zimO7TyBASLS5hzc817l9daraQJBAJ6B 8YdRcq6LHwAvfpoI3a08u7IhYY1xAiPAT9sZVOFSXy3cagFPl867ChMGxfjV2Suo y6/TGCkGy/IF3lbYQ0UCQGABvzCfcw3/xVY7co6k8kSu1Mf1dj/MYZh0oI7qrbUN
301
