- •Table of Contents
- •Dedication
- •Foreword
- •Introduction
- •What Is FreeBSD?
- •How Did FreeBSD Get Here?
- •The BSD License: BSD Goes Public
- •The Birth of Modern FreeBSD
- •FreeBSD Development
- •Committers
- •Contributors
- •Users
- •Other BSDs
- •NetBSD
- •OpenBSD
- •Other UNIXes
- •Solaris
- •Linux
- •IRIX, HPUX, etc.
- •FreeBSD's Strengths
- •Portability
- •Power
- •Simplified Software Management
- •Optimized Upgrade Process
- •Filesystem
- •Who Should Use FreeBSD
- •FreeBSD as Your Desktop
- •Who Should Run Another BSD
- •Who Should Run a Proprietary Operating System
- •How to Read This Book
- •What Must You Know?
- •How to Think About UNIX
- •Channels of Communication
- •Working with Channels
- •The Command Line
- •Chapter 1: Installation
- •FreeBSD Hardware
- •Processor
- •Memory (RAM)
- •Hard Drives
- •Downloading FreeBSD
- •Installing by FTP
- •Other FTP Install Information
- •Hardware Setup
- •Actually Installing FreeBSD
- •Configuring the Kernel for ISA Cards
- •Sysinstall: The Ugly FreeBSD Installer
- •Disk Usage
- •Partitioning
- •Root
- •Swap Space
- •Swap Splitting
- •/var, /usr, and /home
- •A Second Hard Drive
- •Soft Updates
- •Block Size
- •What to Install
- •Installation Media
- •Committing
- •Root Password
- •Adding Users
- •Time Zone
- •Mouse
- •Configuring Network Cards
- •Xfree86
- •Software
- •Restart
- •A Note on Editors
- •Chapter 2: Getting More Help
- •Why Not Mail First?
- •The FreeBSD Attitude
- •Man Pages
- •The FreeBSD Manual
- •Man Page Headings
- •The FreeBSD Documentation
- •The Mailing List Archives
- •Other Web Sites
- •Checking the Handbook/FAQ
- •Checking the Man Pages
- •Checking the Mailing List Archives
- •Using Your Answer
- •Mailing for Help
- •Chapter 3: Read This Before You Break Something Else! (Backup and Recovery)
- •Overview
- •System Backups
- •Tape Devices
- •How to Read Dmesg.boot
- •Controlling Your Tape Drive
- •Device Nodes
- •Using the TAPE Variable
- •The mt Command
- •Backup Programs
- •Dump/Restore
- •Restoring from an Archive
- •Checking the Contents of an Archive
- •Extracting Data from an Archive
- •Restoring Interactively
- •Recording What Happened
- •Revision Control
- •Getting Older Versions
- •Breaking Locks
- •Viewing Log Messages
- •Reviewing a File's Revision History
- •Ident and ident Strings
- •Going Further
- •The Fixit Disk
- •Chapter 4: Kernel Games
- •Overview
- •What Is the Kernel?
- •Configuring Your Kernel
- •Sysctl
- •Changing Sysctls
- •Setting Sysctls at Boot
- •Kernel Configuration with Loader.conf
- •Manually Configuring the Loader
- •Viewing Loaded Modules
- •Loading and Unloading Modules
- •Customizing the Kernel
- •Preparation
- •Your Backup Kernel
- •Editing Kernel Files
- •Basic Options
- •Multiple Processors
- •Device Entries
- •Building Your Kernel
- •Troubleshooting Kernel Builds
- •Booting an Alternate Kernel
- •Adding to the Kernel
- •LINT
- •Fixing Errors with Options
- •Tweaking Kernel Performance
- •Sharing Kernels
- •Chapter 5: Networking
- •Overview
- •Network Layers
- •The Physical Layer
- •The Physical Protocol Layer
- •The Logical Protocol Layer
- •The Application Layer
- •The Network in Practice
- •Mbufs
- •What Is a Bit?
- •Ethernet
- •Broadcasting
- •Address Resolution
- •Hubs and Switches
- •Netmasks
- •Netmask Tricks
- •Hexadecimal Netmasks
- •Unusable IP Addresses
- •Routing
- •Network Ports
- •Connecting to an Ethernet Network
- •Multiple IP Addresses on One Interface
- •Using Netstat
- •Chapter 6: Upgrading FreeBSD
- •Overview
- •FreeBSD Versions
- •Release
- •Snapshots
- •Security Updates
- •Which Release Should You Use?
- •Upgrade Methods
- •Upgrading via Sysinstall
- •Upgrading via CVSup
- •Simplifying the CVSup Upgrade Process
- •Building a Local CVSup Server
- •Controlling Access
- •Authentication
- •Combining Authentication and Access
- •Chapter 7: Securing Your System
- •Overview
- •Who Is the Enemy?
- •Script Kiddies
- •Disaffected Users
- •Skilled Attackers
- •FreeBSD Security Announcements
- •Subscribing
- •What You'll Get
- •Installation Security Profiles
- •Moderate
- •Extreme
- •Root, Groups, and Permissions
- •The root Password
- •Groups of Users
- •Primary Group
- •Some Interesting Default Groups
- •Group Permissions
- •Changing Permissions
- •Changing File Ownership
- •Assigning Permissions
- •File Flags
- •Viewing a File's Flags
- •Setting Flags
- •Securelevels
- •Setting Securelevels
- •Which Securelevel Do You Need?
- •What Won't Securelevel and File Flags Do?
- •Living with Securelevels
- •Programs That Can Be Hacked
- •Putting It All Together
- •Chapter 8: Advanced Security Features
- •Traffic Control
- •Default Accept vs. Default Deny
- •TCP Wrappers
- •Configuring Wrappers
- •Daemon Name
- •The Client List
- •Putting It All Together
- •Packet Filtering
- •IPFilter
- •IPFW
- •Default Accept and Default Deny in Packet Filtering
- •Basic Concepts of Packet Filtering
- •Implementing IPFilter
- •Configuring Your Server to Use Jail
- •Configuring Your Kernel to Use Jail
- •Client Setup
- •Final Jail Setup
- •Starting the Jail
- •Managing Jails
- •Shutting Down a Jail
- •Monitoring System Security
- •If You're Hacked
- •Chapter 9: Too Much Information About /etc
- •Overview
- •Varieties of /etc Files
- •Default Files
- •/etc/defaults/rc.conf
- •/etc/adduser.conf
- •/etc/crontab
- •/etc/dhclient.conf
- •/etc/fstab
- •/etc/hosts.allow
- •/etc/hosts.equiv
- •/etc/hosts.lpd
- •/etc/inetd.conf
- •/etc/locate.rc
- •/etc/login.access
- •/etc/login.conf
- •Specifying Default Environment Settings
- •/etc/mail/mailer.conf
- •/etc/make.conf and /etc/defaults/make.conf
- •/etc/master.passwd
- •/etc/motd
- •/etc/mtree/*
- •/etc/namedb/*
- •/etc/newsyslog.conf
- •/etc/passwd
- •/etc/periodic.conf and /etc/defaults/periodic.conf
- •/etc/printcap
- •Working with Printcap Entries
- •/etc/profile
- •/etc/protocols
- •/etc/rc.conf and /etc/defaults/rc.conf
- •/etc/resolv.conf
- •/etc/security
- •/etc/services
- •/etc/shells
- •/etc/spwd.db
- •/etc/sysctl.conf
- •/etc/syslog.conf
- •Chapter 10: Making Your System Useful
- •Overview
- •Making Software
- •The Pain and Pleasure of Source Code
- •Debugging
- •The Ports and Packages System
- •Ports
- •Finding Software
- •Legal Restrictions
- •Using Packages
- •Installing via FTP
- •What Does a Package Install?
- •Uninstalling Packages
- •Package Information
- •Controlling Pkg_add
- •Package Problems
- •Forcing an Install
- •Using Ports
- •Installing a Port
- •Using Make Install
- •Uninstalling and Reinstalling
- •Cleaning Up with Make Clean
- •Building Packages
- •Changing the Install Path
- •Setting Make Options Permanently
- •Upgrading Ports and Packages
- •Upgrading the Ports Collection
- •Ports Collection Upgrade Issues
- •Checking Software Versions
- •Hints for Upgrading
- •Chapter 11: Advanced Software Management
- •Overview
- •Startup and Shutdown Scripts
- •Typical Startup Script
- •Using Scripts to Manage Running Programs
- •Managing Shared Libraries
- •Ldconfig
- •Running Software from the Wrong OS
- •Recompilation
- •Emulation
- •ABI Implementation
- •Foreign Software Libraries
- •Installing and Enabling Linux Mode
- •Identifying Programs
- •What Is Linux_base?
- •Adding to Linux_base
- •Configuring Linux Shared Libraries
- •Installing Extra Linux Packages as RPMs
- •What Is SMP?
- •Kernel Assumptions
- •FreeBSD 3.0 SMP
- •FreeBSD 5 SMP
- •Using SMP
- •SMP and Upgrades
- •Chapter 12: Finding Hosts With DNS
- •How DNS Works
- •Basic DNS Tools
- •The Host Command
- •Getting Detailed Information with Dig
- •Looking Up Hostnames with Dig
- •More Dig Options
- •Configuring a DNS Client: The Resolver
- •Domain or Search Keywords
- •The Nameserver List
- •DNS Information Sources
- •The Hosts File
- •The Named Daemon
- •Zone Files
- •A Real Sample Zone
- •named.conf
- •/var/named/master/absolutebsd.com
- •Making Changes Work
- •Starting Named at Boottime
- •Checking DNS
- •Named Configuration Errors
- •Named Security
- •Controlling Information Order
- •More About BIND
- •Chapter 13: Managing Small Network Services
- •Bandwidth Control
- •Configuring IPFW
- •Reviewing IPFW Rules
- •Dummynet Queues
- •Directional Traffic Shaping
- •Certificates
- •Create a Request
- •Being Your Own CA
- •Testing SSH
- •Enabling SSH
- •Basics of SSH
- •Creating Keys
- •Confirming SSH Identity
- •SSH Clients
- •Connecting via SSH
- •Configuring SSH
- •System Time
- •Setting the Time Zone
- •Network Time Protocol
- •Ntpdate
- •Ntpd
- •Inetd
- •/etc/inetd.conf
- •Configuring Programs in Inetd
- •Inetd Security
- •Starting Inetd
- •Changing Inetd's Behavior
- •Chapter 14: Email Services
- •Email Overview
- •Where FreeBSD Fits In
- •The Email Protocol
- •Email Programs
- •Who Needs Sendmail?
- •Replacing Sendmail
- •Installing Postfix
- •Pieces of Postfix
- •Configuring Postfix
- •Email Aliases
- •Email Logging
- •Virtual Domains
- •Postfix Commands
- •Finding the Correct Mail Host
- •Undeliverable Mail
- •Installing POP3
- •Testing POP3
- •POP3 Logging
- •POP3 Modes
- •Qpopper Preconfiguration Questions
- •Default Qpopper Configuration
- •APOP Setup
- •Configuring Pop3ssl
- •Qpopper Security
- •Chapter 15: Web and FTP Services
- •Overview
- •How a Web Server Works
- •The Apache Web Server
- •Apache Configuration Files
- •Configuring Apache
- •Controlling Apache
- •Virtual Hosting
- •Tweaking Virtual Hosts
- •.NET on FreeBSD
- •Installing the SSCLI
- •FTP Security
- •The FTP Client
- •The FTP Server
- •Chapter 16: Filsystems and Disks
- •Device Nodes
- •Hard Disks and Partitions
- •The /etc/fstab File
- •Disk Basics
- •The Fast File System
- •Vnodes
- •FFS Mount Types
- •FFS Mount Options
- •What's Mounted Now?
- •Dirty Disks
- •Fsck
- •Mounting and Unmounting Disks
- •Mounting Standard Filesystems
- •Mounting with Options
- •Mounting All Standard Filesystems
- •Mounting at Nonstandard Locations
- •Unmounting
- •Soft Updates
- •Enabling Soft Updates
- •IDE Write Caching and Soft Updates
- •Virtual Memory Directory Caching
- •Mounting Foreign Filesystems
- •Using Foreign Mounts
- •Foreign Filesystem Types
- •Mount Options and Foreign Filesystems
- •Filesystem Permissions
- •Removable Media and /etc/fstab
- •Creating a Floppy
- •Creating an FFS Filesystem
- •The Basics of SCSI
- •SCSI Types
- •SCSI Adapters
- •SCSI Buses
- •Termination and Cabling
- •SCSI IDs and LUNs
- •FreeBSD and SCSI
- •Wiring Down Devices
- •Adding New Hard Disks
- •Creating Slices
- •Creating Partitions
- •Configuring /etc/fstab
- •Installing Existing Files onto New Disks
- •Temporary Mounts
- •Moving Files
- •Stackable Mounts
- •Chapter 17: RAID
- •Hardware vs. Software RAID
- •RAID Levels
- •Software RAID
- •Vinum Disk Components
- •Vinum Plex Types
- •Preparing Vinum Drives
- •Dedicating Partitions to Vinum
- •Configuring Vinum
- •Concatenated Plex
- •Removing Vinum Configuration
- •Striped Volumes
- •Mirrored Volumes
- •Starting Vinum at Boot
- •Other Vinum Commands
- •Replacing a Failed Mirrored Plex
- •Chapter 18: System Performance
- •Overview
- •Computer Resources
- •Disk Input/Output
- •Network Bandwidth
- •CPU and Memory
- •Using Top
- •Memory Usage
- •Swap Space Usage
- •CPU Usage
- •When Swap Goes Bad
- •Paging
- •Swapping
- •Are You Swapping or Paging?
- •Fairness in Benchmarking
- •The Initial Test
- •Using Both CPUs
- •Directory Caching
- •Moving /usr/obj
- •Lessons Learned
- •Chapter 19: Now What's It Doing?
- •Status Mails
- •Forwarding Reports
- •Logging with Syslogd
- •Facilities
- •Levels
- •Syslog.conf
- •Wildcards
- •Rotating Logs with Newsyslog.conf
- •Reporting with SNMP
- •Basics of SNMP
- •MIBs
- •Snmpwalk
- •Specific Snmpwalk Queries
- •Translating Between Numbers and Names
- •Setting Up Snmpd
- •Index Numbers
- •Configuring MRTG
- •Sample mrtg.cfg Entry
- •Testing MRTG
- •Tracking Other System Values
- •Monitoring a Single MIB
- •Customizing MRTG
- •MRTG Index Page
- •Sample MRTG Configurations
- •Chapter 20: System Crashes and Panics
- •What Causes Panics?
- •What Does a Panic Look Like?
- •Responding to a Panic
- •Prerequisites
- •Crash Dump Process
- •The Debugging Kernel
- •kernel.debug
- •Dumpon
- •Savecore
- •Upon a Crash
- •Dumps and Bad Kernels
- •Using the Dump
- •Advanced Kernel Debugging
- •Examining Lines
- •Examining Variables
- •Apparent Gdb Weirdness
- •Results
- •Vmcore and Security
- •Symbols vs. No Symbols
- •Serial Consoles
- •Hardware Serial Console
- •Software Serial Console
- •Changing the Configuration
- •Using a Serial Console
- •Serial Login
- •Emergency Logon Setup
- •Disconnecting the Serial Console
- •Submitting a Problem Report
- •Problem Report System
- •What's in a PR?
- •Filling Out the Form
- •PR Results
- •Chapter 21: Desktop FreeBSD
- •Overview
- •Accessing File Shares
- •Prerequisites
- •Character Sets
- •Kernel Support for CIFS
- •SMB Tools
- •Configuring CIFS
- •Minimum Configuration: Name Resolution
- •Other smbutil Functions
- •Mounting a Share
- •Other mount_smbfs Options
- •Sample nsmb.conf Entries
- •CIFS File Ownership
- •Serving Windows File Shares
- •Accessing Print Servers
- •Running a Local Lpd
- •Printer Testing
- •Local Printers
- •X: A Graphic Interface
- •X Prerequisites
- •X Versions
- •Configuring X
- •Making X Look Decent
- •Desktop Applications
- •Web Browsers
- •Email Readers
- •Office Suites
- •Music
- •Graphics
- •Desk Utilities
- •Games
- •Afterword
- •Overview
- •The Community
- •What Can You Do?
- •Getting Things Done
- •Second Opinions
- •Appendix: Some Useful SYSCTL MIBs
- •List of Figures
- •Chapter 1: Installation
- •Chapter 5: Networking
- •Chapter 6: Upgrading FreeBSD
- •Chapter 19: Now What's It Doing?
- •List of Tables
- •Chapter 4: Kernel Games
- •Chapter 5: Networking
- •Chapter 8: Advanced Security Features
- •Chapter 9: Too Much Information About /etc
- •List of Sidebars
- •Chapter 15: Web and FTP Services
code segment = |
base 0x0, limit 0xfffff, type 0x1b |
= |
DPL 0, pres 1, def32 1, gran 1 |
processor eflags = |
interrupt enabled, resume, IOPL=0 |
current process = |
5 (syncer) |
interrupt mask = |
bio |
trap number = |
12 |
panic: page fault |
|
...............................................................................................
If you're an inexperienced sysadmin, messages like this can turn your blood cold, but don't fret yet. FreeBSD sometimes gives somewhat friendly messages that describe what's wrong, which give you a specific place to start looking, or at least a term to Google. I've seen panics that give very specific instructions on kernel options that should be set to prevent their recurrence. Other panic messages, like this one, are much more puzzling.
The only word that looks even vaguely familiar in this panic message is the fourth line from the bottom, where we see that the current process is something called "syncer". Most people don't know what the syncer is, and most of those who recognize it know better than to try to fix it. The "mysterious panic" is among the worst situations you can have in FreeBSD.
Responding to a Panic
If you get a system panic, the first thing to do is get a copy of the panic message. Since FreeBSD is no longer running at this point, the standard UNIX commands will not work–the system won't let you SSH in or out, and even simple commands like script(1) will not work. The console might be utterly locked up, or it could be in a debugger. In either event, you need the error message.
The first time I received an error message like the preceding one, I scrambled for paper and pen. Eventually I found an old envelope and a broken stub of pencil, and crawled between the server rack and the rough brick wall. I balanced the six−inch black−and−white monitor that I'd dragged back there in one hand, while with my other hand I held the old envelope against the wall. Apparently I had a third hand to copy the panic message to the envelope, because it somehow got there. Finally, scraped and cramped, I slithered back out of the rack and victoriously typed the whole mess into an email. Surely the crack FreeBSD developers would be able to look at this garbage and tell me exactly what had happened.
After all of this struggle, the initial response was quite frustrating: "Can you send a backtrace?"
I've seen many, many messages to a FreeBSD mailing list reporting problems like this, and they always get this same response. Most of the people who send these messages are never heard from again, and I understand exactly how they feel. When you've been dealing with a server that crashes, or (worse) keeps crashing, the last thing you want to do is reconfigure it.
The problem with the panic message on my envelope was that it only gave a tiny scrap of the story. It was so vague, in fact, that it was like describing a stolen car as "red, with a scratch on the fender."If you don't give the car's make, model, and VIN number or license plate, you cannot expect the police to make much headway. Similarly, without more information from your crashing kernel, the FreeBSD developers can't catch the criminal code.
There's a simple way around this problem, however: Set up your server to handle a panic before the
453
panic happens. Set it up when you install the server. That way, you'll get a backtrace automatically if it ever crashes. This might seem like a novel idea, and it certainly isn't emphasized in the FreeBSD documentation, but it makes sense to be ready for disaster. If it never happens, well, you don't have anything to complain about. If you get a panic, you're ready and you'll be able to present the FreeBSD folks with a complete debugging dump the second a problem appears.
Prerequisites
prepare for a kernel panic, you need to have the system source code installed. You'll also need one (or more) swap partitions that is at least 1MB larger than your physical memory, and preferably twice as large as your RAM. If you have 512MB of RAM, for example, you need a swap partition that is 513MB or larger, with 1024MB being preferable. (On a server, you should certainly have multiple swap partitions on multiple drives!) If your swap partition isn't large enough, you'll have to either add another hard drive with an adequate swap partition, or reinstall. (While having a /var partition with at least that much disk space free is helpful, it isn't necessary.)
If you followed the installation suggestions in the beginning of the book, you're all set.
Crash Dump Process
The kernel crash−capturing process works somewhat like this. If a properly configured system crashes, it will save a core dump of the system memory. You can't save it to a file, because the crashed kernel doesn't know about files; it only knows about partitions. The simplest place to write this dump is to the swap partition, and the dump is placed as close to the end of the swap partition as possible. Once the crashing system saves the core to swap, it reboots the computer.
During the reboot, /etc/rc enables the swap partition. It then (probably) runs fsck on the crashed disks. It has to enable swapping before running fsck, because fsck might need to use swap space. Hopefully, you have enough swap space that fsck can get everything it needs without overwriting the dump file lurking in your swap partition.
Once the system has a place where it can save a core dump, it checks the swap partition for a dump. Upon finding a core dump, savecore copies the dump from swap to the proper file, clears the dump from swap, and lets the reboot proceed. You now have a kernel core file, and can use that to get a backtrace.
The Debugging Kernel
The standard FreeBSD kernel install removes all the debugging information from the kernel before installing it, including symbols, which provide a map between the machine code and the source code. Such a map can be larger than the actual program, and nobody wants to run a kernel that's three times larger than it has to be! However, we need this map, and other debugging information, to diagnose what went wrong in the crash.
This map also includes a complete list of source−code line numbers, so the developer can learn exactly where a problem occurred. Without this information, the developer is stuck trying to map a kernel core to the source code by hand, which is somewhat like trying to assemble a million−piece puzzle without a picture, or even knowing that you have all the pieces. Overall, this is an ugly job. It's even uglier when you consider that the developer who needs to do the work is a volunteer. That's why your debugging kernel should include its symbols.
To keep the symbols, add these lines to your kernel configuration:
454
...............................................................................................
options DDB
makeoptions DEBUG=−g
...............................................................................................
The DDB option installs the DDB kernel debugger. (This isn't strictly necessary, but it can be helpful and it doesn't take up that much room.) The makeoptions you set here tell the system to build a debugging kernel.
Post−Panic Behavior
When configuring your system, you'll need to decide how you want the system to behave after a panic. Do you want the computer to reboot automatically, or do you want it to stay at the panic screen until you manually trigger a reboot? If the system is at a remote location, you'll almost certainly want the computer to reboot automatically, but if you're at the console debugging kernel changes, you might want it to wait for you to tell it to reboot.
To reboot automatically, include the kernel option DDB_UNATTENDED:
...............................................................................................
options DDB_UNATTENDED
...............................................................................................
If you don't include this option, the system will wait for you to tell it to reboot.
kernel.debug
Once you have the kernel configured the way you want, do the usual dance (described in Chapter 4) to configure and install it.
Once you've installed your new kernel, you'll find a file in the kernel compile directory called kernel.debug. This is your kernel with symbols; save it somewhere. The next time you upgrade your system or customize the kernel, this debugging kernel will be overwritten by a new debugging kernel. If you've built a kernel just for testing, you want to be sure that you have your known−to−be−good debugging kernel available.
One of the frequent causes of a failed debugging process is losing the debugging kernel and trying to debug a crashed kernel with a different kernel.debug. This won't work. I generally copy kernel.debug to /var/crash/kernel.debug.date, so I can tell when a particular debug kernel was built. This lets me date−match the current kernel to a debugging kernel, and also tells me when a kernel.debug is old enough that I can delete it.
With any luck, you'll never need these debugging kernels, though personally, I've found my luck to be unreliable. Debugging kernels take little disk space and provide quick answers when trouble hits, so I strongly suggest using them.
455
Dumpon
Now it's time to tell the system where to write the core dump—this location is the dumpdev. FreeBSD uses the swap partition as the dump device, which is why it has to be slightly larger than your physical memory. (You can use a UFS partition, but after the crash it won't be a usable UFS partition any more!)
You can get the device name from /etc/fstab. Look for a line with a FSType entry of swap; the first entry in that line is the physical device name. For example, on my laptop, my swap field in /etc/fstab looks like this:
...............................................................................................
/dev/ad0s4b none swap sw 0 0
...............................................................................................
Tell the system to use a dump device with dumpon(8), which must be set each time the system boots. Of course, as you might guess, there's an rc.conf switch for this. My swap partition is /dev/ad0s4b, so I specify this as the dump device in /etc/rc.conf:
...............................................................................................
dumpdev="/dev/ad0s4b"
...............................................................................................
Savecore
Next, tell your system where to save the dump after the reboot using savecore(8). You can change the default, /var/crash, with rc.conf's dumpdir setting. (This directory must exist; savecore will not create it!)
As you become more experienced in saving panics, you may find that you need to adjust the core−saving behavior. Read savecore(8), and set any appropriate options in savecore_flags in /etc/rc. One popular flag is −z, which compresses the core file and can save some disk space. Savecore is now smart enough to automatically eliminate unused memory from the dump, which can save a lot of room.
Upon a Crash
If you're in front of your computer when it crashes, you'll see the panic message. If the system is set to reboot automatically, numbers will start to flow by, counting the megs of memory being dumped. Finally, the computer will reboot, fsck will run, and you can watch savecore copy the memory dump from swap to a file.
If your system doesn't reboot automatically, you'll need to enter two commands after the panic, at the debugger prompt: panic to sync the disks and continue to start the reboot process. (FreeBSD supports many other debugging options, but you have to know how to use the kernel debugger to make use of them.)
Dumps and Bad Kernels
Some kernels just crash and die during boot, or won't stay up long enough to fix a problem. In that case, you need to boot with a different kernel.
456
