
- •Список литературы:
- •Введение
- •Основные понятия и определения
- •Классический подход
- •Системный подход
- •Способы создания моделей
- •Классификация моделей
- •Классификация методов моделирования
- •Глава 2 Теоретические основы моделирования
- •1.1 Условное моделирование
- •1.2 Аналогия.
- •2. Аналогичное моделирование
- •3. Элементы теории подобия
- •3.1 Понятие подобия
- •3.2 Подобие физических процессов (объектов)
- •3.3 Виды подобия.
- •Теория размерности Основные положения теории размерности
- •Критерии подобия
- •3.4 Определение критериев подобия
- •Определение критериев подобия при известном математическом описании
- •Определение критериев подобия с использованием теории размерности (при неизвестном математическом описании)
- •3.5 Первая теорема подобия и ее применение при определении критериев подобия.
- •3.5.1 Определение критериев подобия по уравнениям исследуемых процессов
- •3.5.2 Определение критериев подобия процессов, описываемых уравнениями, содержащими только однородные функции
- •3.5.3 Определение критериев подобия процессов, описываемых уравнениями, содержащими неоднородные функции
- •Преобразование критериев подобия
- •Методика определения критериев подобия способом интегральных аналогов
- •3.6 Вторая теорема подобия и ее применение при определении критериев подобия (-теорема)
- •Методика определения критериев подобия на основе анализа размерностей
- •Этапы определения критериев подобия
- •3.7 Третья теорема подобия и ее применение при установлении условий подобия.
- •3.7.1 Формулировка третьей теоремы, отвечающая реальным задачам
- •3.7.2 Автомодельность
- •3.7.3. Масштабные уравнения
- •Общий вид масштабных уравнений для любой системы по методу размерности
- •3.8 Дополнительные положения о подобии
- •Первое дополнительное положение о подобии сложных систем
- •3.8.1.1 Следствия первого дополнительного положения
- •Второе дополнительное положение о подобии систем с нелинейными или переменными параметрами
- •Третье дополнительное положение о подобии анизотропных или неоднородных систем
- •Четвертое дополнительное положение о подобии физических
- •Этапы процесса подобного моделирования
- •Классификация видов подобия и моделирования
- •В качестве модели заменим
- •Методы идентификации
- •Структурная идентификация
- •Р ис. 20 Общая схема идентификации модели Текущие данные
- •Выбор класса модели
- •Выбор критерия согласия
- •Параметрическая идентификация
- •Схемы параметрической идентификации
- •Идентификация линейной регрессионной модели р ис. 21 Схема одномерной системы
- •Линейный регрессионный анализ для многомерных систем
- •Идентификация динамических систем
- •Идентификация нелинейных систем
- •Метод прямого поиска
- •Аппроксимация нелинейности
- •Модель Гаммерштейна
- •Метод Виннера
- •Двухэтапная процедура
- •Планирование эксперимента
- •Активный эксперимент
- •Построение d – плана
- •Оценка адекватности модели
- •Практическая реализация моделирования
- •Масштабирование переменных для авм
- •Операционный усилитель как основной элемент авм
- •Линейные операционные элементы
- •Пропорциональный (масштабирующий) усилитель
- •Звено перемены знака
- •Суммирующий усилитель
- •Интегрирующее звено.
- •Интегрально-пропорциональный усилитель
- •Дифференциальное звено
- •Пример аналогового моделирования двигателя постоянного тока
- •Способы математического описания систем автоматизации электроприводов.
- •Моделирование нелинейных функций
- •Работа операционного усилителя в режиме компаратора
- •Добротность аналоговой вычислительной машины
- •Реализация аналоговых моделей
- •Методы составления схем набора
- •Общая методика моделирования на авм
- •Цифровое моделирование.
- •Приведение дифференциальных уравнений к виду, удобному для цифрового моделирования
- •Структурирование при цифровом моделировании.
- •Выбор вспомогательных переменных для передаточных функций, содержащих оператор в числителе
- •Гибридное моделирование
- •Система matlab
- •Краткая характеристика системы
- •Система matlab (Вводный курс) Ввод простых матриц
- •Программа моделирования динамических систем.
- •Требования к системе.
- •1. Быстрый старт.
- •2. Начальные сведения.
- •2.1 Создание простой модели этап 1
- •2.2 Этап 2
- •3. Анализ моделей.
- •3.1 Способы использования.
- •3.2 Моделирование.
- •3.2.1 Моделирование с помощью меню.
- •3.2.2 Моделирование с помощью командной строки.
- •3.3 Просмотр траекторий выходных сигналов.
- •3.5 Алгебраические циклы
- •3.6 Алгоритмы моделирования
- •4. Управление величиной шага
- •4.1 Минимальный размер шага
- •4.2 Максимальный размер шага
- •4.3 Методы с фиксированным шагом
- •4.4 Эффективный размер шага
- •5. Системы дискретного времени.
- •5.1 Дискретные блоки
- •5.2 Образцовое время
- •5.3 Полностью дискретные системы
- •5.4 Смешанные системы (непрерывные и дискретные)
- •6. Линеаризация
- •Имитационное моделирование.
- •1. Сущность имитационного моделирования.
- •2. Цифровое моделирование больших систем.
- •2.1 Характерные особенности больших систем.
- •2.2 Аналитические модели
- •2.3 Имитационные модели.
- •2.3.1 Влияние случайных факторов.
- •2.4 Пример имитационной модели.
- •2.5 Условия использования имитационных моделей.
- •2.6 Недостатки имитационных моделей.
- •3. Технология моделирования сложных систем. Технологические этапы создания и использования имитационных моделей.
Идентификация нелинейных систем
Существует несколько методов идентификации нелинейных систем:
Метод прямого поиска;
Аппроксимация нелинейности;
Модель Гаммерштейна;
Метод Виннера;
Двухэтапная процедура.
Метод прямого поиска
Нелинейную функцию f(x) преобразуют в линейную функцию fл(x) . Далее применяют любой метод идентификации линейных систем.
Допустим, что модель объекта имеет вид:
,
где х1, х2 – входные параметры, у – выходной параметр, а0, в1, в2 – искомые параметры.
Рассматриваем только положительные значения у.
Аппроксимация нелинейности
Таблично заданная функция (явно нелинейная) аппроксимируется с помощью полинома произвольным методом. Полученный полином и есть модель нашего объекта.
Ограничения: функция должна быть непрерывна.
Существует теорема Вейерштрасса, которая доказывает, что все нелинейности можно описать полиномом:
а) Замена линейной переменной и сведение к регрессии;
б) Применение интегральных формул.
Модель Гаммерштейна
Входной сигнал u(t) известен.
Если известна функциональная зависимость f(u(t)) – вид нелинейности, то вводим Z=f(u(t)). Идентификация сводится к определению параметров линейной части:
.
Функциональная зависимость f(u(t)) не известна. Строится таблица этой нелинейной зависимости. По этой таблице любой интерпретируемой формулой получаем аппроксимирующий полином нелинейности f*(u(t)). Зная параметры аппроксимирующего полинома, вводим Z(t) = f*(u(t)) и, снимая соответствующие ему y(t), решаем задачу идентификации:
.
Пример: Система приводится к следующему виду:
Р
- функция является
нелинейной.
Используя метод интерполяции, аппроксимируем полином
Составляем обобщенный вектор:
Тогда искомая матрица:
может быть получена по выражению:
,
где
Метод Виннера
Является наиболее точным методом идентификации, на практике применяется крайне редко из-за сложности вычислений и отсутствия ясной физической интерпретации.
Двухэтапная процедура
1. Нелинейная характеристика разбивается на участки, в пределах которых нелинейная функция может быть с достаточной долей точности представлена линейной функцией. Данные участки называются участками линеаризации. Начало участков называется точкой линеаризации. В каждой точке линеаризации входной переменной придается незначительное приращение и фиксируется изменение выходной переменной. По данным входного и выходного переходного процесса с помощью линейных методов идентификации строятся линейные модели.
2. Аппроксимация линейных моделей в нелинейную функцию.
На основе зарегистрированного переходного процесса строится матрица коэффициентов линейным реверсионным методом. В результате получим столько матриц, сколько узловых точек. Каждый коэффициент матрицы аппроксимируется по той или иной интерполяционной формуле с помощью любого полинома.
Пример: Рассматривается отдельно нелинейное звено. На нелинейной характеристике выбирается отрезок, где система ведет себя как линейная функция.
Р
Отрезок,
где функция линейна -
,
гдеx1i
– точки или узлы линеаризации.
Для точек линеаризации подбираем соответствующие входные точки
.
Каждой
точке линеаризации подаем входную
переменную, увеличивающуюся на величину
.
Снимаем переходный процесс системы для каждой точки линеаризации.
Для каждой точки линеаризации получаем линейную модель Аi
По каждому aij получаем функциональную зависимость aij = f(aij) методом аппроксимации тем же самым полиномом
.