Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
80
Добавлен:
23.05.2015
Размер:
98.82 Кб
Скачать

Работа 3.04

Исследование эффекта фарадея

Ю.Н.Волгин

ЗАДАЧА

1.Исследование искусственной оптической активности (эффекта Фарадея) стекла. Определение постоянной Верде и марки стекла.

2.Исследование естесственной оптической активности кристалла Bi12SiO20. Определение постоянной вращения.

ВВЕДЕНИЕ

  1. Наглядное описание поляризованного света.

Сточки зрения классической физики свет представляет собой поперечные электромагнитные волны. Направления колебаний вектора напряженности электрического и магнитного поля (E и H соответственно) взаимно перпендикулярны и составляют прямой угол с лучом света. Большинство источников, кроме оптических квантовых генераторов (ОКГ), испускает так называемый естественный (неполяризованный) свет. По определению, естественный свет – это свет, в котором электрический и магнитный векторы хаотически меняют свое направление, оставаясь в плоскости, перпендикулярной лучу, что схематически показано на рис.1 для вектораЕ. Все направления колебаний равновероятны.[1]

Рис.1

Поляризованный свет – это свет, с преимущественным направлением колебаний вектора ЕиН. Общепринято изображать поляризованный свет, используя проекционную картину – проекцию траектории конца электрического вектора на плоскость, перпендикулярную лучу.[2] Существует три типа поляризации: линейная, циркулярная, эллиптическая. Проекционная картина этих типов показана на рис.2 а схематическое изображение на рис.3.

Линейная поляризация включает в себя бесконечное число форм, различающихся азимутом (угол на рис.2).

Рис.2

Циркулярная поляризация (круговая) включает в себя две формы, различающиеся направлением вращения.

Рис.3

Нетрудно показать, что линейно поляризованный свет можно представить как суперпозицию двух форм циркулярно поляризованного света (см. рис.4).

Рис.4

Эллиптическая поляризация включает в себя бесконечное число форм, различающихся азимутом, эллиптичностью и направлением вращения, и является наиболее общим типом поляризации.

Часто пользуются понятием «плоскость поляризации», определяя так плоскость, содержащую направление распространения волны и направление колебаний вектора Е. Следует заметить, что определение это неоднозначно, так как можно создать несколько волн, имеющих одну и ту же плоскость поляризации, но разное направление колебаний вектораЕ.

Обычно свет состоит из естественной и поляризованой составляющих. Такой свет называется частично поляризованным. Отношение интенсивности поляризованной составляющей частично поляризованного света к полной его интенсивности называется степенью поляризации и записывается в виде

(1)

где Р– степень поляризации,Iпол– интенсивность поляризованной составляющей,Iест– интенсивность естественной составляющей.

Если свет частично линейно поляризован, то параметр степени поляризации может быть определен экспериментально как отношение разности интенсивностей двух выделенных ортогональных поляризаций к их сумме.

(2)

Соответствие формул (1) и (2) нетрудно показать. Поляризатор – это оптическое устройство, проходя через которое свет становится линейно поляризованным. Действие поляризатора состоит в том, что он разделяет первоначальный пучок на два, в которых направления колебаний вектора Евзаимно перпендикулярны, т.е. ортогональны, пропускает один из них и поглощает или отражает другой. Работа поляризаторов разных типов основана на таких физических явлениях как явление двойного лучепреломления, отражения света, дихроизма и др. Идеальный поляризатор полностью пропускает свет, линейно поляризованный вдоль его оптической оси ОО, и не пропускает свет, линейно поляризованный перпендикулярно оптической оси. Пропускание двух установленных один за другим поляризаторов становиться минимальным когда их оптические оси взаимно перпендикулярны (поляризаторы скрещены).

  1. Об оптической активности.

Открытие волновой, электромагнитной природы света позволило объяснить многие явления, возникающие при взаимодействии света и вещества, например, явление дисперсии, рассеяния и др. Большой интерес представляет явление вращение плоскости поляризации света при его прохождении через среду. Свойство вещества поворачивать плоскость поляризации света называется естественной оптической активностью. Этим свойством, как оказалось, обладают некоторые жидкости, растворы многих веществ, а также некоторые кристаллы. Такие вещества получили название естественно активных веществ.

Вращательные способность естественно оптически активных веществ характеризуют постоянной вращения:

(3)

где, - угол поворота плоскости поляризации,d – толщина слоя вещества.

Значение зависит от природы вещества, от температуры, от длины волны света.

Обычно явление естественной оптической активности наблюдается в анизотропных кристаллах. Наблюдать и интерпретировать его удобнее, когда свет распространяется вдоль оптической оси кристалла. Изучение вращения в кристаллах, например в кварце (SiO2) показывает, что существует два сорта кварца: правовращающий (положительный, поворачивающий плоскость поляризации по часовой стрелке, обозначается индексом «+») и левовращающий (отрицательный «-»), при этом+=- . Направление вращения принято устанавливать для наблюдателя, смотрящего навстречу лучу света (*). При изменении направления распространения света на 1800, направление вращения не изменяется.

Объяснения оптической активности дал Френель в 1817г., основываясь на предположении о том, что фазовая скорость света V, т.е. показатель преломленияnв оптически активных веществах различны для лучей, поляризованных право- и левоциркулярно. При этом, для правовращающих веществV+>V-, n+<n-, а для левовращающих – наоборот.

На рис. 4 приведен пример сложения двух циркулярно поляризованных волн оптически активного вещества совокупность право- и левоциркулярно поляризованных волн эквивалентна линейно поляризованному свету с колебаниями электрического вектора, направленными относительно АА, т.е. вращающиеся векторы Е+иЕ-симметричны относительно АА. Тогда, при условииV+=V- ,Е+будет повернут на больший угол (+) вправо, чемЕ-влево (-). Следовательно, плоскость, относительно которой векторыЕ+иЕ-будут симметричны, оказывается ВВ, повернутая вправо относительно АА, т.е. плоскостью поляризации, повернутой на угол(рис. 4б), равный половине разности фаз междуЕ+иЕ-. Это видно из рисунка:

(4)

где 0– длина световой волны в вакууме.

(*) Следует заметить, что направление вращения некоторые авторы устанавливают для наблюдателя, смотрящего по лучу, также как под плоскостью поляризации в некоторых учебниках подразумевается плоскость, проходящая через магнитный вектор (а не электрический) и направление распространения света. Мы пользуемся определениями, рекомендуемыми в[1]

3. Эффект Фарадея.

Большинство веществ становятся оптически активными при воздействии внешнего магнитного поля. Это явление (вращение плоскости поляризации линейно поляризованного света при прохождении его через вещество, помещенное в продольное магнитное поле) называется эффектом Фарадея – по имени первооткрывателя. Эффект Фарадея относится к числу магнитооптических явлений. Исследование диэлектриков и полупроводников с помощью магнитооптических методов позволяет наиболее точно определять их важнейшие характеристики, параметры энергетической структуры и имеет большое практической значение.

Угол поворота плоскости поляризации может быть вычислен по следующей формуле:

(5)

где d – путь света в веществе,Н– напряженность магнитного поля,V – постоянная Верде, которая зависит от частоты света, свойств вещества и температуры[3]. Принято постоянную Верде измерять в угловых минутах, деленных на эрстед и сантиметр (мин/Эсм). В оптической промышленности по значениюVопределяют состав стекла. Направление вращения, т.е. знакVзависит от направления магнитного поля и не связано с направлением распространения света. Поэтому фарадеевское вращение условно принято считать положительным для наблюдателя, смотрящего по полю, если плоскость поляризации поворачивается по часовой стрелке (вправо).

Очевидно, что с феноменологической точки зрения эффект Фарадея, по аналогии с естественной активностью объясняется тем, что показатели преломления n+ и n-для света, поляризованного право- и левоциркулярно, становятся различными при помещении оптически неактивного вещества в магнитное поле. Детальная интерпретация эффекта Фарадея возможна лишь на основе квантовых представлений[3]. Конкретный механизм явления может быть несколько различным в разных веществах и в разных областях спектра. Однако, с точки зрения классических представлений, эффект Фарадея всегда связан с влиянием на дисперсию вещества частоты, с которой оптические электроны совершают ларморовскую прецессию вокруг направления магнитного поля, и может быть получен на основе классической теории дисперсии. В диэлектриках в видимой области спектра дисперсия определяется связанными электронами, которые совершают вынужденные колебания под действием электрического поля световой волны. Вещество рассматривается как совокупность таких классических осцилляторов. Тогда, записав и решив уравнение движения электронов отдельно для лево- и правоциркулярно поляризованной волны, можно получить выражение для угла поворота плоскости поляризации в виде:

(6)

где (7)

здесь е– заряд электрона,m-масса электрона,N – концентрация электронов,- частота света,с- скорость света в вакууме,0– собственная частота осциллятора. С выводом формул (6) и (7) можно ознакомиться в приложении, имеющимся в лаборатории.

Соседние файлы в папке Лабораторные по физике