
- •Содержание
- •Предисловие
- •1. Основные сведения о ВОЛС
- •1.1. Общие положения
- •Преимущества ВОЛС
- •Недостатки ВОЛС
- •Типовая схема системы волоконно-оптической связи
- •1.2. Основные компоненты ВОЛС
- •Литература к предисловию и главе 1
- •2. Оптическое волокно
- •2.1. Типы оптических волокон
- •Одномодовые волокна
- •2.2. Распространение света по волокну
- •Геометрические параметры волокна
- •Затухание
- •Потенциальные ресурсы волокна и волновое уплотнение
- •Дисперсия и полоса пропускания
- •Межмодовая дисперсия
- •Хроматическая дисперсия
- •Поляризационная модовая дисперсия
- •2.3. Характеристики поставляемых волокон
- •Градиентное многомодовое волокно
- •Функциональные свойства одномодовых волокон
- •Литература к главе 2
- •3. Пассивные оптические компоненты
- •3.1. Разъемные соединители
- •Типы конструкций
- •Вносимые потери
- •Обратное отражение и контакты типа PC, Super PC, Ultra PC, APC
- •Надежность, механические, климатические и другие воздействия
- •Стандарты соединителей
- •Оптические шнуры
- •Механический сплайс (МС)
- •Производители и поставщики
- •3.2. Сварное соединение волокон
- •Количественные оценки качества сварки
- •3.3. Оптические разветвители
- •Ответвитель
- •3.4. Устройства волнового уплотнения WDM
- •Основные технические параметры WDM фильтров
- •Широкозонные и узкозонные WDM фильтры
- •3.5. Оптические изоляторы
- •Вращение плоскости поляризации
- •Принцип действия оптического изолятора
- •Технические параметры
- •3.6. Другие специальные пассивные компоненты ВОЛС
- •Аттенюаторы
- •Оптические переключатели
- •Соединительные герметичные муфты
- •3.7. Оптические распределительные и коммутационные устройства
- •Терминирование ВОК
- •Оптический узел
- •Производители оптического распределительного и кроссового оборудования
- •Принципы построения оптического кроссового устройства
- •Обслуживание ОКУ
- •Оптические кроссы высокой и сверхвысокой плотности
- •Примеры инсталляции кроссового оборудования
- •Литература к главе 3
- •4. Электронные компоненты систем оптической связи
- •4.1. Передающие оптоэлектронные модули
- •Типы и характеристики источников излучения
- •Светоизлучающие диоды
- •Лазерные диоды
- •Другие характеристики
- •Основные элементы ПОМ
- •4.2. Приемные оптоэлектронные модули
- •Основные элементы приемных оптоэлектронных модулей
- •Принципы работы фотоприемника
- •Технические характеристики фотоприемников
- •Лавинный фотодиод
- •Электронные элементы ПРОМ
- •4.3. Повторители и оптические усилители
- •Типы ретрансляторов
- •Оптические усилители
- •4.4. Разновидности усилителей EDFA
- •Усилители на фтор-цирконатной основе
- •Литература к главе 4
- •5. Сети передачи данных
- •5.1. Мультиплексирование
- •Инверсное мультиплексирование
- •5.2. Сети с коммутацией каналов и пакетов
- •Коммутация каналов
- •Коммутация пакетов
- •Протокол X.25
- •Ретрансляция кадров Frame Relay
- •Ретрансляция ячеек Cell Relay
- •5.3. Эталонная модель OSI
- •Стандарты IEEE 802
- •Литература к главе 5
- •6.1. Принцип действия
- •6.2. Составляющие стандарта FDDI
- •6.3. Типы устройств и портов
- •6.4. Оптический обходной переключатель
- •Устройство OBS
- •6.5. Кабельная система и уровень PMD
- •Стандарты MMF-PMD, SMF-PMD и TP-PMD
- •Оптические соединители
- •6.6. Уровень PHY
- •Кодирование и декодирование данных
- •Особенности кодирования при передаче по витой паре
- •Эластичный буфер
- •Функция сглаживания
- •Фильтр повторений
- •6.7. Уровень MAC
- •Маркеры и кадры
- •Временной анализ процессов передачи маркера и кадров
- •Мониторинг и инициализация кольца
- •6.8. Обзор уровня SMT
- •Управление соединениями
- •Управление кольцом RMT
- •Управление, основанное на передаче кадров FBM
- •6.9. Построение сетей FDDI
- •Когда рекомендуется использовать технологию FDDI
- •Поставляемое оборудование
- •Литература к главе 6
- •Формат кадра Ethernet
- •Основные варианты алгоритмов случайного доступа к среде
- •Протокол CSMA/CD
- •Спецификации физического уровня IEEE 802.3 и типы портов
- •7.2. Основные типы устройств Ethernet
- •AUI интерфейс и трансиверы Ethernet
- •Рабочая станция, сетевая карта
- •Повторитель (концентратор)
- •Коммутатор
- •7.3. Проектирование сети в пределах коллизионного домена Ethernet
- •Архитектура стандарта Fast Ethernet
- •Физические интерфейсы Fast Ethernet
- •Типы устройств Fast Ethernet
- •7.5. Проектирование сети в пределах коллизионного домена Fast Ethernet
- •Модель 1
- •Модель 2
- •7.6. Дуплексный Ethernet
- •7.7. Сети Gigabit Ethernet (стандарты IEEE 802.3z и 802.3ab)
- •Архитектура стандарта Gigabit Ethernet
- •Уровень MAC
- •Расширение носителя
- •Пакетная перегруженность
- •Типы устройств
- •7.8. Миграция Ethernet к магистральным сетям
- •Литература к главе 7
- •8. Полностью оптические сети
- •8.1. Основные определения и элементы
- •8.2. Плотное волновое мультиплексирование
- •Пространственное разделение каналов и стандартизация DWDM
- •8.3. Применение оптических усилителей EDFA
- •Технические параметры усилителей EDFA
- •Классификация усилителей EDFA по способам применения
- •Расчет числа каскадов линейных усилителей EDFA
- •8.4. Оптимизация WDM/TDM
- •Трибные интерфейсы
- •Существующие архитектуры SDH
- •Миграция к оптическому уровню
- •8.5. Оптические коммутаторы
- •Оптические коммутаторы nxn
- •Сведения из теории коммутации и общий анализ некоторых коммутаторов
- •8.6. Волновые конвертеры
- •8.7. Классификация полностью оптических сетей
- •Простая многоволновая линия связи SMWL
- •Параметры многоволновых мультиплексных линий связи
- •8.8. AON с коммутацией каналов
- •Широковещательная AON
- •AON с пассивной волновой маршрутизацией
- •AON с активной волновой маршрутизацией
- •8.9. AON с коммутацией пакетов
- •8.10. Архитектура AON
- •8.11. Прототипы и коммерческие реализации AON
- •Литература к главе 8
- •9. Сети абонентского доступа
- •9.1. Концепции развития абонентских сетей
- •Традиционная информационная абонентская сеть
- •Гибридная волоконно-коаксиальная сеть
- •Частотное распределение потоков
- •Распределение восходящих потоков
- •Распределение нисходящих потоков
- •Физические особенности восходящих и нисходящих потоков
- •9.3. Платформа доступа Homeworx
- •Предоставляемые услуги
- •Основные элементы архитектуры
- •Структура потоков и транспортные характеристики Homeworx
- •Сценарии развертывания платформы Homeworx
- •9.4. Межстудийный телевизионный обмен и система DV6000
- •Литература к главе 9
- •Указатель терминов и определений

В правой части выражения мы пренебрегли малой величиной TL по сравнению с
nTTRT в знаменателе. Из формулы видно, что при фиксированном значении латентного времени производительность будет возрастать с ростом TTRT. Увеличение TTRT ведет к уменьшению процессов переключений кольца в единицу времени, когда маркер переходит от станции к станции.
Предыдущее упрощенное рассмотрение предполагало наличие одного вида трафика. Однако для стандарта FDDI предусмотрена передача кадров двух типов трафика – синхронного и асинхронного [13].
Синхронный трафик предназначен для приложений, которые требуют предоставления им гарантированной пропускной способности (для передачи голоса, видеоизображения, управления процессами и других случаев работы в реальном времени). Для такого трафика каждой станции предоставляется фиксированная небольшая часть пропускной способности кольца FDDI, поэтому станция имеет право передавать кадры синхронного трафика в течение
определенного времени Tsynch всегда, когда она получает маркер от предыдущей станции.
Асинхронный трафик – это обычный трафик локальных сетей, не предъявляющий высоких требований к задержкам обслуживания. Станция может передавать асинхронные кадры только в том случае, если при последнем обороте маркера по кольцу для этого осталась ка- кая-либо часть неизрасходованной пропускной способности. С учетом возможности передачи двух видов трафика, временем удержания маркера THT правильней называть интервал времени, в течение которого станция может передавать асинхронные кадры. Это время с учетом
поправки на синхронный трафик определяется по формуле THT = TTRT − TRT − Tsynch .
Изохронный трафик и стандарт FDDI-II. Синхронный трафик не удовлетворяет более жестким требованиям синхронной передачи, таким как: величина вариаций задержки или дрожание. Для этой цели было разработано расширение стандарта FDDI, которое получило название FDDI-II. Фактически станция, поддерживающая этот стандарт, может работать в двух режимах: в традиционном режиме (основная мода) и в режиме FDDI-II (гибридная мода). В последнем случае взаимодействие станций больше напоминает асинхронную TDM магистраль (см. гл. 5). По сути дела, FDDI-II оказался совершенно другим стандартом, плохо совместимым со стандартом FDDI. По этой причине он не получил большого распространения и здесь не рассматривается.
Мониторинг и инициализация кольца
Все вместе станции сети ведут непрерывный распределенный мониторинг работы кольца. В случае обнаружения ошибок или попытки их коррекции, при включении новой станции в кольцо и при выходе станции из кольца, при обнаружении какой-либо станцией факта утери маркера (маркер считается утерянным, если станция не получает его в течение удвоенного времени TTRT), при обнаружении длительного отсутствия активности в кольце, когда станция в течение определенного времени не наблюдает проходящих через нее кадров данных, по команде от блока управления станцией SMT будут иметь место три следующих процесса:
•процесс заявлений по запуску маркера (claim token process);
•процесс запуска маркера и инициализации кольца (initialization process);
•процесс сигнализации, на основании которого происходит изоляция неисправного уча- стка кабеля или исключение неисправной станции из кольца (beacon process).
Процесс заявлений по запуску маркера. Во время этого процесса вырабатывается единое для всех станций время TTRT, и определяется станция, которая будет запускать маркер. Обычно это право получает станция с меньшим значением выставляемого вначале времени TTRT. В течение этого процесса каждая станция непрерывно передает находящейся ниже по течению станции специальные заявительные кадры, содержащие адрес источника кадра и заявленное значение TTRT, и одновременно прослушивает полученные от вышестоящей станции аналогичные кадры. При этом она либо ретранслирует полученные кадры, обновляя собственное значение параметра TTRT, либо продолжает передавать свои. Преимущество имеют кадры с меньшим значением TTRT. При равном значении TTRT преимущество имеют кадры с большим значением MAC-адреса. Процесс заявлений прекращается, когда станция получает свой собственный заявленный кадр (заметим, что к этому моменту время TTRT устанавливается на всех станциях одно и тоже). Эта станция начинает процесс инициализации кольца.
144 |
Р.Р. УБАЙДУЛЛАЕВ |