
- •Оглавление
- •Введение
- •1. Основные понятия теории системного анализа и принятия решений
- •Классификация задач принятия решения
- •Калибровочные соотношения между альтернативами
- •2.1. Однокритериальные задачи в условиях определенности
- •2.2. Многокритериальные задачи в условиях определенности
- •2.3. Принятие решений в условиях неопределенности
- •2.3.1. Принятие решений при наличии неопределенных факторов
- •Системная матрица расчетных случаев риска
- •2.3.2. Принятие решений в условиях отсутствия информации
- •2.3.3. Принятие решений в условиях нечеткой информации
- •2.3.4. Методы построения функций принадлежности
- •Качественные оценки градации альтернатив
- •3. Принятие решений с использованием критерИев
- •3.1. Минимаксный критерий
- •3.2. Расширенный минимаксный критерий
- •3.3. Критерий байеса-лапласа
- •3.4. Критерий сэвиджа
- •3.5. Модели агрегирования критериев
- •Схемы агрегирования локальных критериев
- •3.6. Основные понятия теории игр
- •Игра с нулевой суммой
- •3.7. Многомерные модели принятия решений
- •Устойчивые и неустойчивые решения.
- •4. Методы многокритериальной оптимизации
- •4.1. Аксиоматическая теория полезности
- •4.2. Метод electre I
- •4.3. Метод electre II
- •4.4. Метод анализа иерархий (аналитическая иерархия)
- •5. Синтез оптимального управления объектами
- •5.1. Уравнение эйлера
- •5.2. Формализация задаЧи синтеза оптимальНого управления
- •5.3. Критерии оптимальности автоматических систем
- •5.4. Применение вариационного исчисления в оптимальНом управлении
- •5.5. Синтез оптимального управления. Метод бойчука
- •6. Задачи вычисления численных оценок
- •6.1. Процедура построения квазипорядка на множестве объектов (задача об упаковке)
- •6.2. ПроцедурА оптимального назначения объектов (Задача о назначениях)
- •6.2.1. Постановка многокритериальной задачи о назначениях
- •6.2.2. Формальный анализ задачи
- •6.2.3. Графы предпочтения
- •6.2.4. Матрица предпочтения
- •Оценки субъектов по критериям
- •Оценки объектов по критериям
- •Назначение c1o3 по критериям
- •Затраты на производство единицы продукции
- •Запасы ресурсов
- •Цена единицы продукции
- •6.4. Задача Принятия решений в условиях риска
- •6.5. Пример использования критериев
- •Варианты решений о проверке машины (критерии мм, Байеса-Лапласа
- •Варианты решений о проверке машины (критерий Сэвиджа)
- •6.6. Задача постороенИя функций принадлежности
- •6.7. Синтез оптимального управления с использованием метода Бойчука
- •6.8. Объектно-ориентированный подход в системном анализе и управлении
- •6.8.1. Структура построения проекта задачи системного анализа с использованием ооп
- •Библиографический список
Назначение c1o3 по критериям
|
|
|
|
|
|
C1 |
3 |
3 |
1 |
1 |
2 |
O3 |
3 |
3 |
1 |
1 |
2 |
Векторы: С13= (0 0 0 0 0),O13= (0 0 0 0 0).
Таблица 6.4
Назначение C4O1 по критериям
|
|
|
|
|
|
C4 |
2 |
3 |
2 |
1 |
1 |
O1 |
2 |
3 |
2 |
1 |
2 |
Векторы: C41= (0 0 0 0 1),О41= (0 0 0 0 0).
Таблица 6.5
Назначение C2O2 по критериям
|
|
|
|
|
|
C2 |
2 |
2 |
3 |
1 |
2 |
O2 |
2 |
2 |
3 |
2 |
1 |
Векторы: С22= (0 0 0 1 0), О22= (0 0 0 0 1).
Таблица 6.6
Назначение C3O4 по критериям
|
|
|
|
|
|
C3 |
1 |
1 |
2 |
2 |
3 |
O4 |
1 |
1 |
3 |
2 |
2 |
Векторы: C34= (0 0 1 0 0),О34= (0 0 0 0 1).
Теперь возможен анализ назначений и учет предпочтений ЛПР.
6.3. ЗАДАЧА ПЛАНИРОВАНИЯ ПРОИЗВОДСТВА
Пусть
некоторое предприятие производит Nтипов продукции, затрачивая при этомMресурсов. Известно:— количествоi-го
ресурса, необходимое для производства
единичного количестваj-й
продукции (
),
)
,
).
Обозначим:
— запасi-го ресурса
на предприятии
;
— цена единичного количестваj-й
продукции
.
Предполагается, что затраты ресурсов растут прямо пропорционально объему производства.
Пусть
— планируемый объем производстваj-й
продукции. Допустимым является такой
набор производимой продукцииx= (x1,x2,
…,xn),
при котором суммарные затраты каждого
видаi-го ресурса не
превосходят его запаса (6.11).
Стоимость
набора продукции x:.
Задача: при всех наборах векторов x, удовлетворяющих ограничениям найти такой, при котором:
Пример. Пусть некоторое предприятие производит три вида продукции: x1, x2,x3 (таблица 6.3).
Таблица 6.3
Затраты на производство единицы продукции
|
Прод. |
1 |
2 |
3 | |
Ресурс |
|
|
|
| |
1 |
1 |
4 |
4 | ||
2 |
2 |
1 |
4 | ||
3 |
4 |
2 |
4 |
На производство затрачивается три вида ресурсов. Запасы ресурсов на складе (таблица 6.4). Цена каждого из видов продукции (таблица 6.5).
Таблица 6.4
Запасы ресурсов
Ресурс |
Кол-во |
1 |
120 |
2 |
60 |
3 |
100 |
Требуется решить задачу условной максимизации функционала (дохода предприятия):
(6.13)
Таблица 6.5
Цена единицы продукции
Продукция |
Цена |
1 |
30 |
2 |
22 |
3 |
56 |
при ограничениях:
(6.14)
Например, задача решается симплексным методом.
6.4. Задача Принятия решений в условиях риска
Пусть существует функция y=A(x,f), гдеxX— множество альтернатив (решений),fF— множество состояний среды,yY— множество исходов. Особенностью рассматриваемых задач таких задач ПР является предположение о неизвестном в момент принятия решения значении параметраF. ФункциюAбудем называть функцией реализации. Такая функция ставит в соответствие каждой паре (x,f) исходy. Будем предполагать, что каждой альтернативе соответствует распределение вероятностей на множестве исходов. Тогда связи альтернатив с исходами, можно отобразить в виде графа (рис. 6.24).
Точка ЛПР соединяется стрелками с альтернативами xi, которые доступны ЛПР. Рядом со стрелками могут быть указаны веса — вероятности наступления соответствующего исхода (сумма весов, выходящих из одной вершины должна быть равна единице).
Рис.6.24. Граф связей альтернатив с исходами
Пусть
существуют Nальтернатив
иKисходов. В качестве
«состояний внешней среды» возьмем
множество возможных связей альтернатив
с исходами:fj:XY,В случае конечных множествXиY:
,
где
— количество стрелок, исходящих из
альтернативыxiна графе связей альтернатив и исходов.
Каждое состояние средыfjсоответствует подграфу (будем называть
его подграфом состояния), в котором из
каждой альтернативыxiисходит только одна стрелка, указывающая
какой исход будет реализован при выборе
альтернативыxi(S— максимально
возможное число таких подграфов).
Выбор «состояния среды» fjи альтернативыxiполностью определяет исходyj(xi). Каждому состоянию внешней среды соответствует вероятность его наступления (вероятность реализации соответствующего подграфа состояния):
где
— заданная вероятность наступления
исходаyjпри выборе альтернативыxi.
Задача ПР в условиях риска в форме функции реализации означает, что статистическую неопределенность, проявляющуюся в неоднозначной (вероятностной) связи между альтернативой и результатом, можно всегда интерпретировать как существование некоторой среды, оказывающей влияние на результат.
На последней минуте хоккейного матча, при ничейном счете, тренер команды должен принять решение о замене вратаря шестым полевым игроком. Статистика, имеющаяся у тренера, показывает, что в аналогичных условиях в предыдущих встречах замена вратаря в 1/6 части случаев привела к выигрышу, в половине случаев — к ничьей и в одной трети случаев — к поражению. Если вратарь не менялся, то в 7/8 случаев встреча заканчивалась вничью, а в 1/8 части случаев команда проигрывала.
Построим граф связей альтернатив и исходов (рис. 6.25).
Рис. 6.25. Граф связей
Альтернативы:
х1— заменить вратаря,х2— не делать замены. Исходы: выигрыш —,
В, поражение —
,
П, ничья —
,
Н.
Задание
функции реализации означает, что при
известном
мы
по каждому ходнозначно определяем
исходy. Знаямы должны точно знать исход при выборе
альтернативыxi.
Выберем следующие шесть «состояний среды»:
f1:x1→ В,х2→ Н;p(f1) = 1/67/8 = 7/48,
f2:x1→ Н,х2→ Н;p(f2) = 1/27/8 = 7/16,
f3:x1→ П,х2→ Н;p(f3) = 1/37/8 = 7/24,
f4:x1→ В,х2→ П;p(f4) = 1/61/8 = 1/48,
f5:x1→ Н,х2→ П;p(f5) = 1/21/8 = 1/16,
f6:x1→ П,х2→ П;p(f6) = 1/31/8 = 1/24.
Функция реализации может быть представлена (рис. 6.26).
|
F |
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
х1 |
|
В |
Н |
П |
В |
Н |
П |
х2 |
|
Н |
Н |
Н |
П |
П |
П |
|
F |
|
|
|
|
|
| |||||
X |
|
|
|
|
|
|
| |||||
х1 |
|
2 |
1 |
0 |
2 |
1 |
0 | |||||
х2 |
|
1 |
1 |
1 |
0 |
0 |
0 |
Рис. 6.26. Табличное задание функции
Среднее:
не
заменять вратаря в среднем приводит к
успеху.
Замена
задачи
задачей
не единственный способ перейти к
статистической постановке задачи.
Например, с учетом дисперсии критериальной функции J.
(6.16)
где
—
дисперсия случайной величины
;k— заданная постоянная.
Эту постоянную целесообразно
интерпретировать как степень несклонности
к риску.
— определяет «степень важности»
дисперсии по отношению к математическому
ожиданию случайной величины
.
Увеличение kприводит к уменьшению «среднего дохода», но уменьшается и вероятность отклонения от «среднего дохода» (в том числе в сторону уменьшения). Таким образом, чем выше k, тем менее склонно лицо к риску.