
- •Глава 1. Введение
- •1.1. Классификация методов исследования наноструктур и поверхности твердого тела
- •1.2. Сверхвысокий вакуум
- •Глава 2. Рентгеновская фотоэлектронная спектроскопия
- •2.1. Общие замечания
- •2.2. Физические принципы РФЭС
- •2.3. Качественный анализ спектров
- •2.3.1. Спектроскопические обозначения уровней
- •2.4. Количественный анализ спектров. Расчет интенсивности
- •2.4.1. Характеристика процесса фотоионизации
- •2.4.2. Характеристика образца
- •2.4.3. Аппаратный фактор
- •2.4.4. Интенсивность фотоэлектронной линии
- •2.5. Количественный анализ спектров. Расчет энергии связи
- •2.6. Структура РФЭ спектров
- •2.6.1. Первичная структура РФЭ спектров
- •2.6.1.1. Остовные уровни
- •2.6.1.2. Спин-орбитальное расщепление уровней
- •2.6.1.3. Валентные уровни
- •2.6.1.4. Серии оже-переходов, возбуждаемых рентгеновским излучением
- •2.6.1.5. Сдвиг фотоэлектронных и оже-электронных линий
- •2.6.2. Вторичная структура РФЭ спектров
- •2.6.2.1. Ложные пики низкой интенсивности
- •2.7. Аппаратура для РФЭС
- •2.7.1. Источник рентгеновского излучения
- •2.7.2. Энергоанализатор
- •2.7.3. Детектор электронов
- •2.8. Использование метода РФЭС в исследовании наноструктур и поверхности твердого тела
- •2.8.1. Образование наноструктур на поверхности Si (100), индуцированное адсорбцией кислорода
- •2.8.3. Исследование кинетики роста островков оксидной фазы на поверхности Ni в окрестности точки Кюри
- •2.8.5. Эволюция электронной структуры нанокластеров благородных металлов
- •2.9. Контрольные вопросы к главе 2
- •3.1. Общие замечания и историческая справка
- •3.2. Физические основы ОЭС
- •3.3. Общий вид электронного спектра в ОЭС
- •3.4. Расчет кинетической энергии оже-электрона
- •3.5. Форма оже-электронных спектров
- •3.6. Тонкая структура оже-электронных спектров
- •3.8. Количественный анализ оже-электронных спектров
- •3.9. Сравнение характеристик ОЭС и РФЭС
- •3.10. Аппаратура для ОЭС
- •3.11. Использование метода ОЭС в исследовании наноструктур и поверхности твердого тела
- •3.12. Контрольные вопросы к главе 3
- •Глава 4. Спектроскопия рассеяния медленных ионов
- •4.1. Общие замечания
- •4.2. Физические основы СРМИ
- •4.3. Общий вид обзорного спектра РМИ
- •4.4. Интенсивность спектральных линий. Сечение рассеяния
- •4.5. Эффект нейтрализации ионов
- •4.6. Структурные эффекты в СРМИ
- •4.6.1. Эффект затенения
- •4.6.2. Эффект многократного рассеяния
- •4.6.3. Применение метода СРМИ для определения степени покрытия поверхности
- •4.6.4. Влияние структуры поверхности на линии спектров РМИ
- •4.7. Аппаратура СРМИ
- •4.8. Использование метода СРМИ в исследовании наноструктур и поверхности твердого тела
- •4.8.1. Исследование in situ эволюции электронной структуры наноразмерных слоев HfO2 при отжиге в вакууме
- •4.8.2. Исследование начальной стадии окисления поверхности никеля
- •4.8.3. Возбуждение электрон-дырочных пар в процессе рассеяния ионов на поверхности нанокластеров Au
- •4.8.4. Исследование релаксации поверхности Ag(111) при нагреве методом СРБИ
- •4.9. Контрольные вопросы к главе 4
- •Глава 5. Сканирующая зондовая микроскопия
- •5.1. Введение
- •5.2. Физические основы СТМ
- •5.3. Аппаратура для СТМ
- •5.4. Физические основы АСМ
- •5.5. Использование методов СЗМ в исследовании наноструктур и поверхности твердого тела
- •5.6. Контрольные вопросы к главе 5
- •Глава 6. Дифракция медленных электронов
- •6.1. Введение
- •6.2. Кристаллография поверхности
- •6.2.1. Трехмерные кристаллические решетки
- •6.2.2. Двумерные кристаллические решетки
- •6.2.3. Индексы Миллера для атомных плоскостей
- •6.3. Дифракция на кристаллической решетке
- •6.3.1. Дифракция на трехмерной решетке
- •6.3.2. Дифракция на двумерной решетке
- •6.4. Аппаратура, геометрия и структурные эффекты в ДМЭ
- •6.4.1. Влияние дефектов, доменной структуры и кластеров на поверхности
- •6.4.2. Учет тепловых колебаний атомов решетки
- •6.5. Использование метода ДМЭ в исследовании наноструктур и поверхности твердого тела
- •6.6. Контрольные вопросы к главе 6
- •ЗАДАЧИ
- •Список рекомендуемой литературы

Основными элементами спектрометра являются помещенные в СВВ камеру источник рентгеновского излучения (рентгеновская пушка), энергоанализатор электронов и детектор электронов, а также электронный модуль регистрации спектров и управления режимами работы спектрометра. Далее рассмотрим подробно каждый из указанных элементов.
2.7.1. Источник рентгеновского излучения
Схема рентгеновского источника представлена на рис.2.30.
Рис. 2.30. Устройство и принцип работы рентгеновского источника: а – диаграмма энергетических уровней Al, иллюстрирующая излучательный переход электрона с заполненного уровня 2p на свободный уровень 1s и эмиссией характеристического рентгеновского излучения AlKα; б – спектр излучения рентгеновского источника, состоящий из узкой линии характеристического рентгеновского излучения на широком фоне тормозного рентгеновского излучения; в – спектр линии Kα характеристического рентгеновского излучения, разложенный на две компоненты Al Kα1 и Al Kα2, отвечающие переходам с уровня 2р1/2 и 2р3/2 и отстоящие друг от друга на ~0.43 эВ, что приводит к суммарной ширине рентгеновской линии ~0.85 эВ при ширине каждой из компонент ~0.5 эВ; г – схематическое изображение двойного анода рентгеновского источника в разрезе [19]
101

Он состоит из катода и анода. Катод представляет собой нить накала и служит источником электронов, работающим на эффекте термоэлектронной эмиссии. Разность потенциалов, прикладываемая между катодом и анодом, ускоряет электроны, торможение которых в материале анода сопровождается эмиссией тормозного и характеристического рентгеновского излучения.
Тормозное рентгеновское излучение характеризуется непре-
рывным энергетическим спектром в пределах 0 < hv ≤ Ee , где Ee = mv2 / 2 – кинетическая энергия тормозящихся электронов.
Максимум интенсивности тормозного излучения приходится примерно на половину максимальной энергии (рис.2.31), а сама интенсивность определяется током эмиссии катода, ускоряющим напряжением между катодом и анодом и материалом анода.
Рис.2.31. Рентгеновский эмиссионный спектр Al анода, бомбардируемого электронами с кинетической энергией 15 кэВ, состоящий из линии характеристического излучения Al Kαс энергией ~1.5 кэВ и широкого спектра тормозного излучения
[15]
Характеристическое рентгеновское излучение возникает вследствие ионизации электронным ударом остовных электронных уровней атомов материала анода и последующих процессов излучательной рекомбинации. При этом энергия рентгеновского излучения определяется разницей энергий связи уровней, участвующих в переходе (рис.2.32).
102

Рис.2.32. Схема излучательного перехода с эмиссией характеристического рентгеновского излучения
Коэффициент полезного действие преобразования энергии быстрых электронов в энергию характеристического рентгеновского излучения составляет ~1% вследствие малой вероятности излучательных переходов по сравнению с безызлучательными. Следствием малости КПД также является нагрев анода. По этой причине внутри анода устроен канал для водяного охлаждения. Величина hv в общем случае тем больше, чем больше атомный номер элемента материала анода, однако увеличение энергии излучения сопровож-
дается уширением линии Whv , что снижает разрешение спектро-
метра.
Поскольку в рентгеновском спектре эмиссии анода присутствует как тормозное, так и характеристическое излучение, необходимо осуществить фильтрацию спектра, оставив лишь наиболее интенсивную линию характеристического излучения. Для обрезания хвоста спектра тормозного излучения между анодом и образцом устанавливают специальную сетку-анод («окно»), которая поглощает часть рентгеновского излучения, а также задерживает электроны, рассеянные на аноде. Материал окна зависит от энергии характеристического излучения, определяющейся материалом анода. Так, для
магниевого источника с линией Mg Kα ( hv =1253.6 эВ) исполь-
зуют алюминиевое окно. Интенсивность прошедшего через окно излучения определяется выражением
I = I0e−ρχ(hv) z , |
(2.80) |
где I0 – интенсивность падающего излучения, |
ρ – плотность ма- |
териала окна, z – толщина окна и χ(hv) – массовый коэффициент
поглощения. Зависимость коэффициента поглощения от энергии излучения схематически показана на рис.2.33.
103

Рис.2.33. Зависимость коэффициента поглощения алюминиевого окна и интенсивности рентгеновского излучения линии Mg Kα от энергии рентгеновского излучения [7]
Пик поглощения на энергии hv =1486.6 эВ обусловлен ионизацией оболочки Al 1s . Таким образом, окно «вырезает» из рентгеновского спектра излучение в области энергий hv >1486.6 эВ. На самом деле определенное ослабление интенсивности происходит и для энергий hv <1486.6 эВ, поэтому окно должно быть достаточно тонким. Обычно для этой цели используют фольгу толщиной несколько сотен микрон. Кроме алюминия, в качестве материала окна можно также использовать бериллиевую фольгу.
В качестве материала анода используют различные элементы, дающие рентгеновские линии с энергиями от сотен до десятков тысяч электронвольт. Помимо энергии, они различаются также шириной линии. Данные о наиболее часто используемых источниках представлены в табл. 2.5.
Таблица 2.5. Параметры основных источников рентгеновского излучения
Материал |
Энергия |
Ширина ли- |
Интенсивность |
анода и ли- |
hv, эВ |
нии Whv, эВ |
линии I, фо- |
ния перехо- |
|
|
тон/с. |
да |
|
|
|
Не I |
21.2 |
0.003 |
1·1012 |
Не+ II |
40.8 |
0.017 |
1·1011 |
Y Mζ |
132.8 |
0.450 |
3·1011 |
Mg Kα |
1253.6 |
0.680 |
1·1012 |
Al Kα |
1486.6 |
0.830 |
1·1012 |
Ti Kα |
4510.0 |
2.000 |
5·1011 |
104

Из представленных в таблице источников He и Не+ представляют собой гелиевые лампы, используемые в УФС. Из твердотельных источников наиболее часто используемыми являются Mg и Al. На рис. 2.34 схематически представлены электронные оболочки атома в твердом теле, возбуждаемые различными источниками рентгеновского излучения.
Рис.2.34. Схематическое изображение остовных и валентных электронных оболочек атома в твердом теле и используемых в методе РФЭС источников возбуждающего рентгеновского излучения. Фотоэлектронный спектр отражает структуру электронных уровней исследуемого вещества (К. Зигбан 23)
Для уменьшения естественной ширины линии характеристического рентгеновского излучения в современных спектрометрах используют монохроматоры. Принцип действия монохроматора основан на дифракции рентгеновского излучения на кристаллической решетке. Схема монохроматора в виде круга Роуланда представлена на рис.2.35.
23) К. Зигбан // УФН 138 (1982) с.223.
105

Рис.2.35. Схема устройства рентгеновского монохроматора в виде круга Роуланда
[7, 19]
В этой схеме на круге Роуланда радиуса RR установлены анод рентгеновского источника, образец и сферический кристалл кремния. Падающее на кристалл под углом θ рентгеновское излучение дифрагирует на атомных плоскостях и вновь фокусируется на образце. Условие брэгговской дифракции имеет вид
2d sinθ = λ , |
(2.81) |
где d – межплоскостное расстояние в кристалле, |
λ = c / v – длина |
волны рентгеновского излучения. |
|
Рис.2.36. Условная схема устройства рентгеновского монохроматора с тремя кругами Роуланда, используемая для повышения интенсивности монохроматического рентгеновского излучения [7].
Для излучения линии Al Kα с энергией 1486.6 эВ величина λ = 8.34 Å, откуда получаем значение угла θ =13.4° для монокристалла SiO2 с d = 4.26 Å. Если в падающем на кристалл рент-
106

геновском излучении присутствуют длины волн в интервале λ ± λ , где λ определяется шириной линии, то в отраженном излучении останется только та часть, длина волны для которой удовлетворяет условию дифракции Брэгга (2.81). В силу того, что этому условию удовлетворяет лишь малая доля падающего излучения (~1%), интенсивность излучения на выходе монохроматора значительно ослабляется (что приводит и к малой интенсивности спектральных линий). Для повышения интенсивности иногда используют схему с несколькими кругами Роуланда, лежащими в разных плоскостях, пересекающихся по прямой, соединяющей анод и образец (рис.2.36).
Рис. 2.37. Нормированные по интенсивности РФЭ спектры уровня Ag3d, полученные с использованием монохроматического и немонохроматического рентгеновского излучения. Использование монохроматора приводит к более узким спектральным линиям, меньшему фону и отсутствию рентгеновских сателлитов [17]
Использование монохроматора позволяет уменьшить ширину рентгеновского источника Mg и Al до 0.3÷0.5 эВ, что увеличивает разрешение спектрометра. В качестве иллюстрации на рис. 2.37 показаны нормированные по интенсивности спектры остовного уровня Ag3d, полученные с использованием монохроматического и немонохроматического рентгеновского излучения.
107