Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции по геологии НГ

.pdf
Скачиваний:
165
Добавлен:
22.05.2015
Размер:
5.26 Mб
Скачать

5. Задачи, связанные с изучением характера, особенностей, закономерностей взаимосвязи структуры и функции ГТК, т.е. влияния строения и свойств залежи на показатели процесса разработки и характеристику структуры и параметров технической компоненты, а также на показатели эффективности функционирования ГТК в целом (устойчивость отборов нефти и газа, темпов разработки, себестоимость продукции, конечная нефтеотдача и др.).

Методические задачи - развитие методического вооружения нефтегазопромысловой геологии, т.е. совершенствование старых и создание новых методов решения конкретно-научных промыслово-геологических задач.

Необходимость решения методологических задач возникает в связи с тем, что от эпохи к эпохе, от периода к периоду менялись нормы познания, способы организации знания, способы научной работы. В наше время развитие науки происходит чрезвычайно быстро. В таких условиях, чтобы не отстать от общих темпов развития науки, необходимо иметь представления о том, на чем основана наука, как строится и перестраивается научное знание. Именно получение ответов на эти вопросы и составляет суть методологии. Методология есть способ осознания устройства науки и методов ее работы. Различают методологию общенаучную и частнонаучную.

11

ЛЕКЦИЯ 2

ПРИРОДНЫЕ ГОРЮЧИЕ ИСКОПАЕМЫЕ

Нефть – горючая, маслянистая жидкость, со специфическим запахом, состоящая из смеси углеводородов, содержащая не более 35 % асфальтеносмолисых веществ и находящаяся в породах коллекторах в свободном состоянии. В нефти содержится 82 87 % углерода, 11 14 % водорода (по весу), кислород, азот, углекислый газ, сера, в небольших количествах хлор, йод, фосфор, мышьяк и т.п.

Выделенные из различных нефтей УВ относятся к трем главным рядам: метановому, нафтеновому и ароматическому:

метановые (парафиновые) с общей формулой СnН2n+2; нафтеновые – СnН2n;

ароматические – СnH2n-6.

Преобладают углеводороды метанового ряда (метан СН4, этан С2Н6, пропан С3Н8 и бутан С4Н10), находящиеся при атмосферном давлении и нормальной температуре в газообразном состоянии.

Пентан С5Н12, гексан С6Н14 и гептан С7Н16 неустойчивы, легко переходят из газообразного состояния в жидкое и обратно. Углеводороды от С8Н18 до С17Н36

– жидкие вещества.

Углеводороды, содержащие больше 17 атомов углерода (С17Н3637Н72) – твердые вещества (парафины, смолы, асфальтены).

Классификация нефтей

В зависимости от содержания легких, тяжелых и твердых УВ а также различных примесей нефти делятся на классы и подклассы. При этом учитывается содержание серы, смол и парафина.

Нефти содержат до 5—6 % серы. Она присутствует в них в виде свободной серы, сероводорода, а также в составе сернистых соединений и смолистых веществ — меркаптанов, сульфидов, дисульфидов и др. Меркаптаны и сероводород—наиболее активные сернистые соединения, вызывающие коррозию промыслового оборудования.

По содержанию серы нефти делятся на:

малосернистые (0 ≤S≤0,5 %);

среднесернистые (0,5 < S≤1 %);

сернистые (1 < S≤3 %);

высокосернистые (S>3%).

Асфальтосмолистые вещества. Смолы – вязкие полужидкие образования, содержащие кислород, серу и азот, растворимые в органических растворителях. Асфальтены – твердые вещества, нерастворимые в низкомолекулярных алканах, содержащие высококонденсированные УВ структуры.

Содержание асфальтосмолистых веществ в нефтях колеблется в пределах

12

1—40%. Наибольшее количество смол отмечается в тяжелых темных нефтях, богатых ароматическими УВ.

По содержанию асфальтеносмолистых веществ нефти подразделяются

на:

малосмолистые (0 ≤Ас≤10 %);

смолистые (10 < Ас ≤20%);

высокосмолистые (20 < Ас ≤35%).

Нефтяной парафин—это смесь твердых УВ двух групп, резко отличающихся друг от друга по свойствам,—парафинов C17H36—С35Н72 и церезинов С36Н74—C55H112. Температура плавления первых 27—71°С, вторых— 65—88°С. При одной и той же температуре плавления церезины имеют более высокую плотность и вязкость. Содержание парафина в нефти иногда достигает 13—14 % и больше.

По содержанию парафинов нефти подразделяются на:

малопарафинистые при содержании парафина 0 ≤П≤5 %;

парафинистые— 5 <П≤10 %;

высокопарафинистые — П > 10 %.

Мировые единицы измерения нефти 1 баррель в зависимости от плотности примерно 0,136 т.нефти 1 т.нефти примерно 7,3 барреля

1 баррель = 158,987 литров = 0,158 м3

1 куб.м. примерно 6,29 бареллей

Физические свойства нефти

Плотность (объемная масса) –отношение массы вещества к его объему. Плотность пластовой нефти - масса нефти, извлеченная на поверхность из недр с сохранением пластовых условий, в единице объема. Единица измерения плотности в системе СИ выражается в кг/м3. ρн=m/V

По плотности нефти делятся на 3 группы: легкие нефти (с плотностью от 760 до 870 кг/м3) средние нефти (871 970 кг/м3)

тяжелые (свыше 970 кг/м3).

Плотность нефти в пластовых условиях меньше плотности нефти дегазированной (вследствие увеличения содержания газа в нефти и температуры).

Измеряется плотность ареометром. Ареометр – прибор для определения плотности жидкости по глубине погружения поплавка (трубка с делениями и грузом внизу). На шкале ареометра нанесены деления, показывающие плотность исследуемой нефти.

Вязкость – свойство жидкости или газа оказывать сопротивление перемещению одних ее частиц относительно других.

13

Коэффициент динамической вязкости ( ). – это сила трения приходящаяся на единицу площади соприкасающихся слоев жидкости при градиенте скорости равном 1. /Па·с, 1П (пуаз) = 0,1 Па·с.

Величина, обратная динамической вязкости называется текучестью. Вязкость жидкости характеризуется также коэффициентом

кинематической вязкости, т.е. отношением динамической вязкости к плотности жидкости. За единицу в этом случае принят м2/с. Стокс (Ст) = см2/с = 10-4м2/с.

На практике иногда пользуются понятием условной (относительной) вязкости, представляющей собой отношение времени истечения определенного объема жидкости ко времени истечения такого же объема дистиллированной воды при температуре 200С.

Вязкость пластовой нефти - свойство нефти, определяющее степень ее подвижности в пластовых условиях и значительно влияющее на продуктивность и эффективность разработки залежей.

Вязкость пластовой нефти разных залежей изменяется от 0,2 до 2000 мПа с и более. Наиболее распространены значения 0.8-50 мПа с.

Вязкость уменьшается с ростом температуры, повышением количества растворенных углеводородных газов.

По величине вязкости различают нефти

незначительной вязкостью — н < 1 мПа с; маловязкие — 1< н 5 мПа с; с повышенной вязкостью—5< н 25 мПа с; высоковязкие— н > 25 мПа с.

Вязкость зависит от химического и фракционного состава нефти и смолистости (содержания в ней асфальтеново-смолистых веществ).

Давление насыщения (начало парообразования) пластовои нефти -

давление, при котором начинается выделение из нее первых пузырьков растворенного газа. Пластовая нефть называется насыщенной, если она находится при пластовом давлении, равном давлению насыщения недонасыщенной - если пластовое давление выше давления насыщения. Величина давления насыщения зависит от количества растворенного в нефти газа, от его состава и пластовой температуры.

Давление насыщения определяют по результатам исследования глубинных проб нефти и экспериментальным графикам.

Газосодержание (газонасыщенность) пластовой нефти - это объем газа

Vг растворенного в 1м3 объема пластовой нефти Vпл.н: G=Vг/Vп.н.

Газосодержание обычно выражают в м33 или м3/т.

Промысловым газовым фактором Г называется количество добытого газа в м3, приходящееся на 1 м3 (т) дегазированной нефти. Он определяется по

14

данным о добыче нефти и попутного газа за определенный отрезок времени. Различают газовые факторы: начальный, определяемый за первый месяц работы скважины, текущий – за любой отрезок времени и средний за период с начала разработки до любой произвольной даты.

Поверхностное натяжение – это сила, действующая на единицу длины контура поверхности раздела фаз и стремящаяся сократить эту поверхность до минимума. Оно обусловлено силами притяжения между молекулами (с СИ Дж/м2; Н/м или дин/см) для нефти 0,03 Дж/м2, Н/м (30 дин/см); для воды 0,07 Дж/м2, Н/м (73 дин/см). Чем больше поверхностное натяжение, тем больше проявляется капиллярный подъем жидкости. Величина поверхностного натяжения у воды почти в 3 раза больше, чем у нефти, что определяет разные скорости их движения по капиллярам. Это свойство влияет на особенность разработки залежей.

Капиллярность – способность жидкости подниматься или опускаться в трубках малого диаметра под действием поверхностного натяжения.

Р= 2 σ/ r

Р– давление поднятия; σ - поверхностное натяжение; r – радиус капилляра.

h = 2 σ/ rρg

h - высота поднятия; ρ – плотность жидкости; g - ускорение свободного падения.

Цвет нефти варьирует от светло-коричневого до темно-бурого и черного. Другое основное свойство нефти – испаряемость. Нефть теряет легкие

фракции, поэтому она должна храниться в герметичных сосудах.

Коэффициент сжимаемости нефти βн – это изменение объема пластовой нефти при изменении давления на 0,1 МПа.

Он характеризует упругость нефти и определяется из соотношения

 

 

н

 

1

 

V

,

 

 

 

 

 

V

 

p

где V0

 

 

0

 

 

 

- первоначальный объем нефти; ΔVизменение объема нефти

при изменении

давления на р;

 

 

 

 

 

 

Размерность βн -Па-1.

Коэффициент сжимаемости нефти возрастает с увеличением содержания легких фракций нефти и количества растворенного газа, повышением температуры, снижением давления и имеет значения (6-140) 10-6 МПа-1. Для большинства пластовых нефтей его величина (6-18) 10 -6 МПа-1.

Дегазированные нефти характеризуются сравнительно низким коэффициентом сжимаемости βн=(4-7) 10-10МПа-1.

Коэффициент теплового расширения н – степень расширения нефти изменении температуры на 1 °С

н = (1/Vo) ( V/ t).

15

Размерность 1/°С. Для большинства нефтей значения коэффициента теплового расширения колеблются в пределах (1-20) *10-4 1/°С.

Коэффициент теплового расширения нефти необходимо учитывать при разработке залежи в условиях нестационарного термогидродинамического режима при воздействии на пласт различными холодными или горячими агентами.

Объемный коэффициент пластовой нефти b показывает, какой объем занимает в пластовых условиях 1 м3 дегазированной нефти:

bн= Vпл.н/Vдег = н./ пл.н

где VПЛ.Нобъем нефти в пластовых условиях; Vдег—объем того же количества нефти после дегазации при атмосферном давлении и t=20°С; пл.п— плотность нефти в пластовых условиях; —плотность нефти в стандартных условиях.

Используя объемный коэффициент, можно определить «усадку» нефти, т. е. установить уменьшение объема пластовой нефти при извлечении ее на поверхность. Усадка нефти U

U=(bн-1)/bн*100

При подсчете запасов нефти объемным методом изменение объема пластовой нефти при переходе от пластовых условий к поверхностным учитывают с помощью так называемого пересчетного коэффициента.

Пересчетный коэффициент – величина обратная объемному

коэффициенту пластовой нефти. =1/b=Vдег/Vп.н.= п.н./ н

ФИЗИКО-ХИМИЧЕСКИЕ ПРИРОДНОГО ГАЗА, УГЛЕВОДОРОДНОГО КОНДЕНСАТА И ГАЗОГИДРАТОВ

Пластовые газы

Природные углеводородные газы представляют собой смесь предельных УВ вида СnН2n+2. Основным компонентом является метан СН4. Наряду с метаном в состав природных газов входят более тяжелые УВ, а также неуглеводородные компоненты: азот N, углекислый газ СО2, сероводород H2S, гелий Не, аргон Аr.

Природные газы подразделяют на следующие группы.

-Газ чисто газовых месторождений, представляющий собой сухой газ, почти свободный от тяжелых УВ.

-Газы, добываемые из газоконденсатных месторождений, — смесь сухого газа и жидкого углеводородного конденсата. Углеводородный конденсат состоит из С5+высш.

-Газы, добываемые вместе с нефтью (растворенные газы). Это физические смеси сухого газа, пропанбутановой фракции (жирного газа)

игазового бензина.

16

Газ, в составе которого УВ (С3, С4,) составляют не более 75 г/м3 называют сухим. При содержании более тяжелых УВ (свыше 150г/м3 газ называют жирным).

Газовые смеси характеризуются массовыми или молярными концентрациями компонентов. Для характеристики газовой смеси необходимо знать ее среднюю молекулярную массу, среднюю плотность или относительную плотность по воздуху. Молекулярная масса природного газа

где Мi молекулярная масса i-го компонента; Xi — объемное содержание i-го компонента, доли ед. Для реальных газов обычно М = 16—20. Плотность газа ρг рассчитывается по формуле

где Vм — объем 1 моля газа при стандартных условиях. Обычно значение ρг находится в пределах 0,73— 1,0 кг/м3. Чаще пользуются относительной плотностью газа по воздуху ρг.в равной отношению плотности газа ρг к плотности воздуха ρв взятой при тех же давлении и температуре:

Если ρг и ρв определяются при стандартных условиях, то ρг = 1,293 кг/м3 и

ρв = ρг /1,293 кг/м3.

Уравнения состояния газов используются для определения многих физических свойств природных газов. Уравнением состояния называется аналитическая зависимость между давлением, объемом и температурой.

Состояние газов в условиях высоких давления и температуры определяется уравнением Клайперона — Менделеева:

pV = NRT,

где р — давление; V — объем идеального газа;

N — число киломолей газа (киломолем (кмоль) называют количество вещества, масса которого в килограммах численно равна его молекулярной массе. Киломоли различных идеальных газов при одинаковых температурах и давлениях занимают одинаковые объемы. Объем одного киломоля при нормальных условиях для всех газов равен 22,4 м3/кмоль, т. е. nv = 22,4 м3/кмоль;

R — универсальная газовая постоянная (физическая постоянная, входящая в уравнение состояния 1 моля идеального газа; обозначается R, равна 8,314 Дж/(К.моль) = 1,987 кал/(К.моль);

Т — температура.

Эти уравнения применимы для идеальных газов. Идеальным называется газ, силами взаимодействия между молекулами которого пренебрегают. Реальные углеводородные газы не подчиняются законам идеальных газов. Поэтому уравнение Клайперона — Менделеева для реальных газов записывается в виде

pV = ZNRT,

где Z — коэффициент сверхсжимаемости реальных газов, зависящий от давления, температуры и состава газа и характеризующий степень отклонения

17

реального газа от закона для идеальных газов.

Коэффициент сверхсжимаемости Z реальных газов — это отношение объемов равного числа молей реального Vр и идеального Vи газов при одинаковых термобарических условиях (т.е. при одинаковых давлении и температуре):

Z = Vр /Vи

Влагосодержание природных газов связано с тем, что природные газы и газоконденсатные смеси контактируют с пластовыми водами различных форм и вследствие чего содержат определенное количество паров воды.

Концентрация водяных паров в газе зависит от его состава, давления, температуры. Отношение количества водяных паров (в долях единицы или процентах), находящихся в газе, к максимально возможному содержанию водяных паров в том же газе при тех же условиях называют относительной влажностью газа. Она характеризует степень насыщения газа водяным паром. Количество водяных паров, находящихся в единице объема или массы газа (г/м3

или г/кг), называют абсолютной влажностью.

Пары воды, присутствующие в газах и газоконденсатных смесях, влияют на фазовые превращения углеводородных систем. При определенных термодинамических условиях вода может выделяться из газа (конденсироваться), т.е. переходить в капельно-жидкое состояние. В газоконденсатных системах могут одновременно выделяться вода и конденсат. В присутствии воды давление начала конденсации УВ увеличивается.

Объемный коэффициент пластового газа bг представляющий собой отношение объема газа в пластовых условиях Vпл.г к объему того же количества газа Vст, который он занимает в стандартных условиях, можно найти с помощью уравнения Клайперона — Менделеева:

bг = Vпл.г/Vст = Z(Pпл Тпл/Рст Тст),

где Рпл, Тпл, Pcт, Тст давление и температура соответственно в пластовых и стандартных условиях.

Значение величины bг имеет большое значение, так как объем газа в пластовых условиях на два порядка (примерно в 100 раз) меньше, чем в стандартных условиях.

18

ЛЕКЦИЯ 3

ОСОБЕННОСТИ НАКОПЛЕНИЯ И ПРЕОБРАЗОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПРИ ЛИТОГЕНЕЗЕ

3.1 Фильтрационные свойства пород-коллекторов. Проницаемость

Важнейшим свойством пород-коллекторов является их способность к фильтрации, т.е к движению в них жидкостей и газов при наличии перепада давления. Способность пород-коллекторов пропускать через себя жидкости и газы называется проницаемостью.

Породы, не обладающие проницаемостью, относятся к неколлекторам.

В процессе разработки залежей в пустотном пространстве породколлекторов может происходить движение только нефти, газа или воды, т.е. однофазовая фильтрация. При других обстоятельствах может происходить двухили трехфазовая фильтрация - совместное перемещение нефти и газа, нефти и воды, газа и воды или смеси нефти, газа и воды.

Хорошо проницаемыми породами являются: песок, песчаники, доломиты, доломитизированные известняки, алевролиты, а так же глины, имеющие массивную пакетную упаковку.

К плохо проницаемым относятся: глины, с упорядоченной пакетной упаковкой, глинистые сланцы, мергели, песчаники, с обильной глинистой цементацией.

Промыслово-геологическая классификация коллекторов нефти и газа (по М.И. Максимову, с изменениями)

 

 

 

 

 

 

Таблица 1.

 

Коллектор

 

Литологический состав

 

 

Тип

 

Порода

 

 

 

 

 

 

 

 

 

 

Поровый

 

Пористая

 

Гранулярные

 

коллекторы,

 

 

 

 

 

несцементированные

и

 

 

 

 

 

сцементированные

(пески,

 

 

 

 

 

песчаники,

 

алевролиты,

 

 

 

 

 

переотложенные известняки)

 

 

Каверновый

 

Кавернозная

 

Карбонатные

крупно-

и

 

 

 

 

 

мелкокавернозные

породы

 

 

 

 

 

(известняки,

 

 

 

 

 

 

 

 

доломитизированные

 

 

 

 

 

 

известняки, доломиты)

 

 

Трещинный

 

Трещиноватая

 

Плотные породы

(плотные

 

 

 

 

 

известняки,

 

мергели,

 

 

 

 

 

алевролиты, хрупкие сланцы)

 

 

Трещинно-

 

Трещиновато-

 

Гранулярные

 

коллекторы,

 

поровый

 

пористая

 

сцементированные

(песчаники,

 

 

 

 

19

 

 

 

 

 

 

 

алевролиты, переотложенные

 

 

карбонатные породы)

Трещинно-

Трещиновато-

Карбонатные породы

каверновый

кавернозная

 

Трещинно-

Трещиновато-

То же

порово-

пористокавернозная

 

каверновый

 

 

Каверново-

Кавернозно-пористая

То же

поровый

 

 

Проницаемость горных пород в случае линейной фильтрации определяется по закону Дарси. Согласно которому объемный расход жидкости проходящий сквозь породу при ламинарном движении прямо пропорционально коэффициенту проницаемости, площади поперечного сечения этой породы, перепаду давления, и обратно пропорционально вязкости жидкости и длине пройденного пути

Q kпр

F(P1 P2 )

(8)

L

где Q - объемный расход жидкости в м3/с; kпр – коэффициент проницаемости в м2; F - площадь поперечного сечения в м2; - вязкость флюида

вПа с; L - длина пути в см; (P1-P2) - перепад давления в Па;

Вмеждународной системе единиц (СИ) за единицу проницаемости

принимается проницаемость такой породы, при фильтрации через образец которой площадью 1 м2, длиной 1 м и перепаде давления 1 Па расход жидкости вязкостью 1 Па с составляет 1 м3/с. Размерность единиц - 1 м2. Физический смысл размерности kпр (площадь) заключается в том, что проницаемость характеризует площадь сечения каналов пустотного пространства, по которым

происходит фильтрация.

На практике, учитывая небольшие значения проницаемости в м2, используют размерность мкм2 или 10-3 мкм2, для большинства нефтяных

месторождений коэффициент проницаемости колеблется в пределах 0,1 2 мкм2,

т.е. 10-13 2.10-12 м2, газ добывают из продуктивных пластов с проницаемостью

5.10-15м2.

При разработке нефтяных и газовых месторождений в пористой среде одновременно движутся нефть, газ и вода или их смеси. В связи с этим проницаемость одной и той же пористой среды для одной фазы (жидкости или газа) будет изменяться в зависимости от соотношения компонентов смеси. Поэтому для характеристики проницаемости нефтесодержащих пород введены понятия абсолютной, эффективной (фазовой) и относительной проницаемости.

Под абсолютной проницаемостью понимается проницаемость, определенная при условии, что порода насыщена однофазным флюидом, химически инертным по отношению к ней. Для ее оценки обычно используются воздух, газ или инертная жидкость, так как физико-химические свойства пластовых жидкостей оказывают влияние на проницаемость породы. Величина абсолютной проницаемости выражается коэффициентом проницаемости kпр.

20