
- •Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования
- •Лекция 1 введение
- •1.1. Краткая история развития нефтегазодобычи
- •1.2. Цели и задачи нефтегазопромысловой геологии
- •Лекция 2 природные горючие ископаемые
- •Физико-химические природного газа, углеводородного конденсата и газогидратов
- •Лекция 3 особенности накопления и преобразования органических соединений при литогенезе
- •3.1 Фильтрационные свойства пород-коллекторов.
- •Проницаемость
- •Нефте-, газо-, водонасыщенность пород-коллекторов
- •Лекция 4 состав и физико-химические свойства нефти и газа
- •Пластовые флюиды
- •4.2 Пластовые нефти Классификация нефтей.
- •4.3 Пластовые газы
- •Физические свойства газов
- •4.4 Газоконденсат
- •4.5 Газогидраты
- •4.6 Пластовые воды нефтяных и газовых месторождений
- •Формы залегания воды в породах.
- •Виды вод нефтяных и газовых месторождений.
- •Химическая классификация подземных вод.
- •Физические свойства пластовых вод.
- •Физико-химические свойства пластовых вод
- •Лекция 5 характер изменения состава и физико-химических свойств нефти и газа в зависимости от влияния различных природных факторов
- •5.1 Начальное пластовое давление
- •5.2 Залежи с начальным пластовым давлением, соответствующим гидростатическому
- •5.3 Залежи с начальным пластовым давлением,
- •5.4 Температура в недрах нефтяных и газовых месторождений
- •Лекция 6 проблемы происхождения нефти и газа
- •Лекция 7 миграция углеводородов
- •7.1 Геофизические методы изучения разрезов скважин
- •7.2 Расчленение продуктивной части разреза скважины
- •7.3 Детальная корреляция разрезов скважин
- •7.3.1. Основные положения, учитываемые при детальной корреляции скважин
- •7.3.2. Методические приемы детальной корреляции скважин
- •Лекция 8 формирование залежей
- •8.1. Природные резервуары.
- •Ловушки
- •8.2. Факторы, определяющие внутреннее строение залежей
- •8.2.1. Понятие и виды геологических границ
- •Лекция 9 зональность процессов нефтеобразования
- •Геологическая неоднородность нефтегазоносных пластов
- •Коллекторы нефти и газа
- •Пористость коллекторов
- •Проницаемость коллекторов
- •Гранулометрический (механический) состав пород
- •Условия залегания флюидов в залежи Флюидоупоры
- •Природные резервуары
- •Основные типы залежей
- •Классификация залежей по фазовому состоянию ув
- •Лекция 10 закономерности пространственного размещения скопления нефти и газа в земной коре
- •Дизьюнктивные нарушения
- •Лекция 11 месторождения нефти и газа и их основные классификационные признаки
- •Формирование скоплений нефти и газа
- •Основные принципы их классификации нефтегазогеологического районирования
- •Список литературы
Физические свойства пластовых вод.
Минерализацией воды называется суммарное содержание в воде растворенных солей, ионов и коллоидов, выражаемое в г/100 или в г/л раствора.
Минерализация вод нефтяных и газовых месторождений меняется в очень широких пределах - от менее 1г/л (пресные воды) до 400 г/л и более (крепкие рассолы). Она определяется наличием шести главных ионов (С1-, SO42-, НСО3-, Na+, Са2+, Мg2+).
Значительно распространены в водах также карбонат-ион (СО32-), ионы калия (К+) и железа (Fe2+ и Fe3+). Остальные элементы встречаются в ничтожных количествах (микрокомпоненты).
Минерализация и химический состав вод определяют их физические свойства (плотность, вязкость, поверхностное натяжение, электропроводность и др.).
Для нефтегазопромысловой геологии существенно то, что минерализованные воды имеют повышенную отмывающую способность нефтяных пластов-коллекторов. Их использование при заводнении залежей способствует повышению коэффициента вытеснения нефти, а следовательно, и конечного коэффициента извлечения нефти. В то же время высокая минерализация пластовых вод в определенных условиях может приводить к выпадению солей на забое добывающих скважин и в прискважинной зоне пласта, что ухудшает условия эксплуатации пласта в районе таких скважин.
Газосодержание пластовой воды не превышает 1,5-2,0 м3/м3, обычно оно равно 0,2-0,5 м3/м3. В составе водорастворенного газа преобладает метан, затем следует азот, углекислый газ, гомологи метана, гелий и аргон.
Растворимость газов в воде значительно ниже их растворимости в нефти. При увеличении минерализации воды их растворимость уменьшается.
Сжимаемость воды - обратимое изменение объема воды, находящейся в пластовых условиях, при изменении давления. Значение коэффициента сжимаемости колеблется в пределах (35)10-4МПа-1.
Сжимаемость воды, содержащей растворенный газ, увеличивается; сжимаемость минерализованной воды уменьшается с увеличением концентрации солей. Это свойство играет существенную роль при формировании режимов залежей.
Объемный коэффициент пластовой воды нефтяных и газовых месторождений bв зависит от минерализации, химического состава, газосодержания, пластовых давления и температуры и колеблется от 0,8 до 1,2.
Наиболее влияют на его величину пластовая температура и минерализация.
Плотность пластовой воды зависит главным образом от ее минерализации, пластовых давления и температуры.
В большинстве случаев она меньше плотности в поверхностных условиях (не более чем на 20%), поскольку пластовая температура выше стандартной. Однако в условиях пониженных пластовых температур, например, в зоне развития многолетнемерзлых пород, плотность воды может быть равной плотности воды в поверхностных условиях или даже больше ее.
Вязкость пластовой воды зависит в первую очередь, от температуры, а также от минерализации и химического состава. Газосодержание и давление оказывают меньшее влияние. В большинстве случаев вязкость пластовых вод нефтяных и газовых месторождений составляет 0,2-1,5 мПас.
Поверхностное натяжение пластовой воды, т.е. свойство ее противодействовать нормальным силам, приложенным к ее поверхности и стремящимся изменить ее форму, в значительной степени зависит от химического состава и при соответствующей химической обработке воды может быть значительно снижено. Это имеет существенное значение для разработки нефтяных залежей с заводнением - уменьшение поверхностного натяжения повышает ее вымывающую способность, что способствует увеличению коэффициента вытеснения нефти водой.
Электропроводность воды зависит от ее минерализации. Пресные воды плохо проводят или почти не проводят электрический ток. Минерализованные воды относятся к хорошим проводникам. Мерой электропроводности служит удельное электрическое сопротивление, за единицу измерения которого принят 1 Омм. Знание удельного сопротивления подземных вод необходимо для интерпретации материалов электрометрии скважин.
Все рассмотренные физические свойства подземных вод наиболее надежно определяются по глубинным пробам, отбор которых осуществляется специальными глубинными герметичными пробоотборниками. При отсутствии таких определений эти свойства могут быть с меньшей точностью установлены по специальным графикам, приведенным в монографиях по физике пласта или в справочниках.
Техногенные воды по своим свойствам обычно отличаются по минерализации от пластовых. Они менее минерализованы. Исходя из экологических соображений, там, где это возможно, для нагнетания в пласт используют воду, попутно добываемую вместе с нефтью, в полном ее виде или в смеси с поверхностной водой. В результате в состав попутной воды могут входить пластовая и ранее закачанная вода.
Газоконденсат
Конденсатом называют жидкую углеводородную фазу, выделяющуюся из газа при снижении давления. В пластовых условиях конденсат обычно весь растворен в газе. Различают конденсат сырой и стабильный.
Сырой конденсат представляет собой жидкость, которая выпадает из газа непосредственно в промысловых сепараторах при давлении и температуре сепарации. Он состоит из жидких при стандартных условиях УВ. т.е. из пентанов и высших (C5+высш), в которых растворено некоторое количество газообразных УВ-бутанов, пропана и этана, а также H2S и других газов.
Важной характеристикой газоконденсатных залежей является конденсатно-газовый фактор, показывающий содержание сырого конденсата (см3) в 1 м3 отсепарированного газа.
На практике используется также характеристика, которая называется газоконденсатным фактором, — это количество газа (м3), из которого добывается 1 м3 конденсата. Значение газоконденсатного фактора колеблется для разных месторождений от 1500 до 25 000 м3/м3.
Стабильный конденсат состоит только из жидких УВ — пентана и высших (C6+высш) Его получают из сырого конденсата путем дегазации последнего. Температура выкипания основных компонентов конденсата находится в диапазоне 40—200°С. Молекулярная масса 90—160. Плотность стабильного конденсата в стандартных условиях изменяется от 0,6 до 0,82 г/см3 и находится в прямой зависимости от компонентного углеводородного состава.
Газы газоконденсатных месторождений делятся на газы:
с низким содержанием конденсата (до 150см3/м3),
средним (150—300 см3/м3),
высоким (300—600 см3/м3),
очень высоким (более 600 см3/м3).
Большое значение имеет такая характеристика газа конденсатных залежей, как давление начала конденсации, т.е. давление, при котором конденсат выделяется в пласте из газа в виде жидкости. Если при разработке газоконденсатной залежи в ней не поддерживать давление, то оно с течением времени будет снижаться и может достигнуть величины меньше давления начала конденсации. При этом в пласте начнет выделяться конденсат, что приведет к потерям ценных УВ в недрах.
Газогидраты
Гидраты газов представляют собой твердые соединения (клатраты), в которых молекулы газа при определенных давлении и температуре заполняют структурные пустоты кристаллической решетки, образованной молекулами воды с помощью водородной связи. Молекулы воды как бы раздвигаются молекулами газа — плотность воды в гидратном состоянии возрастает до 1,26—1,32 см3/г (плотность льда 1,09см3/г). Внешне газогидраты напоминают снег. Обычно образуются при температуре ниже 30°С, при давления больше 0,5 МПа.
Распад газогидратов возможен при повышении температуры, при понижении давления, а также путем ввода в пласт веществ, разлагающих гидрат, например, бромида кальция.