Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
Скачиваний:
77
Добавлен:
15.08.2013
Размер:
2.78 Mб
Скачать

Ref. p. 40]

1.1 Fundamentals of the semiclassical laser theory

 

17

 

 

 

 

 

 

Steady-state equations

 

n

 

 

 

The temporal variations of the radiation field are slow

= 0

P A0

= 0

∂t

∂t

compared with T1.

 

 

 

 

 

 

 

 

Adiabatic equations

 

n

 

 

 

no transient e ects of the atom, T2 T1.

= 0

∂P A0

= 0

∂t

∂t

Coherent equations

 

n

 

 

 

The width τ of the interacting pulses is short compared

= 0

∂P A0

= 0

∂t

∂t

with T1, T2; (1.1.45a), (1.1.45b) can be applied.

 

 

 

 

1.1.4 Steady-state solutions

In steady state inversion density n0, polarization P A0, and intensity J of the field are constant in time, but may depend on the spatial coordinates.

1.1.4.1 Inversion density and polarization

The stationary solutions of (1.1.48a), (1.1.48b) are obtained immediately:

n =

 

 

 

n0

 

 

 

(inversion density, homogeneously broadened),

1 + (J/Js) f (ω)

 

 

A

 

 

 

 

 

k0

ωA/2

 

 

χ

 

=

 

 

nrσ

 

 

ω − ωA

+ i

n (susceptibility),

 

 

 

 

P A0 = ε0χAE0

(polarization)

 

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J =

1

ε0c0nr|E0|2

(intensity of the field),

 

 

2

Js =

 

 

ωA

 

 

(saturation intensity of the two-level transition),

2σ0T1

 

 

 

 

 

 

 

 

 

 

σ = σ0f (ω, ωA)

(frequency-dependent cross section of the transition),

σ0 =

 

| µA|2 ωAT2

 

(cross section in resonance),

 

 

 

 

 

 

 

ε0c0nr

 

 

 

 

 

fL(ω, ωA) =

 

 

 

(∆ωA/2)2

(spectral line shape, Lorentzian),

 

(ωA − ω)2

+ (∆ωA/2)2

 

 

 

 

 

 

 

 

 

 

 

 

ωA = 2/T2 (line width of the transition),

(1.1.49)

(1.1.50)

(1.1.51)

(1.1.52)

(1.1.53)

(1.1.54)

(1.1.55)

(1.1.56)

(1.1.57)

Landolt-B¨ornstein

New Series VIII/1A1

18

 

 

 

 

 

 

 

1.1.4 Steady-state solutions

[Ref. p. 40

 

 

 

 

 

 

 

 

 

 

 

 

 

gh(ω, ωA) = ∆ n σ =

n0σ0f (ω, ωA)

(gain coe cient, homogeneously

(1.1.58a)

1 + (J/Js) f (ω, ωA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

broadened),

 

g

inh

(ω, ω

R

) =

n0σ0

h(ω, ω

R

)

ωA

 

(gain coe cient, inhomogeneously

(1.1.58b)

 

 

 

 

 

 

 

1 + J/Js

 

2

 

 

broadened, see Sect. 1.1.6.3).

In Table 1.1.3 some numbers of relevant laser transitions are compiled, in Table 1.1.4 some typical values of the small-signal gain coe cient in resonance are given. The susceptibility strongly depends on the frequency as shown in Fig. 1.1.6. According to (1.1.26) the real part of χA produces an additional refractive index, and the imaginary part absorption or amplification:

A

r

 

 

k0 ωA/2

 

Re χ

= n2

1 =

nrσ

 

 

ω − ωA

n ,

 

 

 

Im χA = −nrαk0 =

nrσ

 

 

 

n .

 

 

k0

 

The steady-state propagation of the electric field is obtained from (1.1.48c):

dz

2

2

 

ωA

 

 

0

 

dE0

=

 

α

+

σn

+ iσn

ω − ωA

 

E

 

,

 

 

 

 

 

 

 

where ∆ n is a function of the field or the intensity.

(1.1.59a)

(1.1.59b)

(1.1.60)

Table 1.1.3. Examples of resonance wavelength λ0, resonance cross section σ0, upper-level lifetime T1 and saturation intensity Js. The simple relation (1.1.53) for the saturation intensity holds for two-level systems only and is not applicable in general [01Men].

 

λ0

σ0

T1

Js

 

[µm]

[m2]

[s]

[W/m2]

Amplifiers

 

1020

105

 

× 105

CO2-gas (1300 Pa)

10.6

2

Neodymium-ion in glass

1.06

4 × 1024

3

× 104

8 . . . 12 × 107

Neodymium-ion in YAG

1.06

5 × 1023

2

× 104

2

× 107

Chromium-ion in Al2O3

0.69

2 × 1024

3

× 103

2.4 × 107

(ruby, T = 300 K)

 

3 × 1017

108

5.3 × 105

Neon (25 Pa)

0.63

Rhodamine 6G in ethanol

0.57

4 × 1020

5

× 109

109

Absorbers

 

8 × 1022

 

× 104

2.5 × 105

SF6

10.6

4

KODAK dye 9860

1.06

4 × 1020

1011

5.6 × 1011

KODAK dye 9740

1.06

6 × 1020

1011

4

× 1011

Cryptocyanine-dye

0.7

5 × 1020

5

× 1010

2

× 1010

in methanol

Table 1.1.4. Typical values of the small-signal gain coe cient g0 = ∆n0σ0 in resonance. The exact values depend on pumping, doping, and other parameters of operation [01Men].

System

λ0 [nm]

g0 [m1]

He/Ne laser

632.8

0.1

Nd-doped glass

1060

5

Nd-doped YAG

1060

50

GaAs-diode

880

4 × 103

Landolt-B¨ornstein

New Series VIII/1A1

Ref. p. 40]

1.1 Fundamentals of the semiclassical laser theory

19

 

 

 

,Pχ$ JDLQ

ω$

5H χ$ SKDVH VKLIW

ω $

 

 

Fig. 1.1.6. Real and imaginary part of

)UHTXHQF\ω

 

 

 

the susceptibility vs. frequency.

1.1.4.2 Small-signal solutions

The solutions for low intensities are discussed. Low means that the intensity J is small compared with the characteristic parameter Js of the system (see Table 1.1.3).

At low intensities J Js, the inversion density is not a ected by the intensity,

n = ∆n0 ,

and (1.1.60) can be integrated. Together with (1.1.23), the complete field is obtained:

E(z) = E0(0) exp[i(ωt − ntk0z)

1

(α − n0σ)z]

(1.1.61)

2

with a total refractive index nt

 

 

 

 

t

 

r

 

nrk0

 

ωA

 

 

 

n

 

= n

 

1 +

σn0

 

ω − ωA

.

 

 

(1.1.62)

 

 

 

 

 

 

The active atoms of the two-level system cause an additional phase shift or refractive index and an additional absorption or amplification, depending on the sign of ∆n0. The small-signal gain factor according to (1.1.30)/(1.1.50) is:

G0 = exp[σ(ω)∆n0z] .

(1.1.63)

Amplification, G0 > 1, requires inversion ∆n0 > 0. The complex amplitude transmission factor A is defined as the ratio of the monochromatic field amplitudes and can be written:

A = E0(0)

= exp i

2

(ω − ωA) + i ∆ωA/2

z .

(1.1.64)

 

E0(z)

 

σ0n0

 

ωA/2

 

 

It depends on the frequency of the field, which means dispersion. Time-dependent fields and especially short pulses are distorted by the amplifying system, pulse broadening and chirping occur.

1.1.4.3 Strong-signal solutions

The steady-state solutions are discussed for intensities which saturate the inversion, see Fig. 1.1.7.

The inversion now depends on the intensity. For the propagation of the intensity, (1.1.48c) gives in steady state

Landolt-B¨ornstein

New Series VIII/1A1

Соседние файлы в предмете Оптика