Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
Скачиваний:
77
Добавлен:
15.08.2013
Размер:
2.78 Mб
Скачать

Ref. p. 131]

3.1 Linear optics

123

 

 

 

3.1.7.2.1.2 Higher-order Hermite-Gaussian beams in simple astigmatic beams

Treatment of the x- or y-component of Hermite-Gaussian-beams after (3.1.27): The complex q-

parameter transformation is treated as above, the fundamental mode part is given as above, the

new beam radius for the Hermite polynom of order m, Hm( 2 x/w Ix) is calculated from the new q-parameter and the phase is derived from it, too [70Col].

For complex Hermite-Gaussian beams: see [86Sie].

3.1.7.2.2 General astigmatic beam

In Table 3.1.19 the Q1-matrix transfer for general astigmatic beams is given. The matrix Q1 is the matrix scheme of inverses of q-parameters and no inverted matrix [96Gro].

Table 3.1.19. Q1-matrix transfer for general astigmatic beams.

Given

Propagated field

 

 

– General Gaussian beam in the input plane:

 

k

1 r

 

U I(r) = exp i

 

r QI

, (3.1.118)

2

r (x, y) the transverse position vector

perpendicular to the propagation axis z .

– QI 1-matrix:

 

 

 

1

1

 

 

Q1

=

qxx

 

qxy

(3.1.119)

I

 

 

1

1

 

 

 

 

qxy

 

qyy

 

 

 

 

 

 

 

 

 

 

with qxx, qxy , qyy complex terms describing the general amplitudeand phasedistribution of U I , and

r Q1 r =

x2

+ 2

xy

+

y2

. (3.1.120)

 

 

 

I

qxx

qxy

qyy

 

 

 

S-matrix of the optical system (see Table 3.1.15) with

A B

S = C D

– Transformation of the QI 1-matrix to its output value:

QO1 = C + D QI

1 A + B QI 1 1 ,

(3.1.121)

see [88Sim, 96Gro, 05Hod].

 

– Field in the output plane:

 

 

 

 

 

 

k

 

U O(r) = exp i

 

2

r QO1 r .

(3.1.122)

after (3.1.99).

Example 3.1.16. Transformation of a simple astigmatic Gaussian beam (no mixing between x and y)

 

!

1

qyy "

I

0

with a θ-rotated cylindrical lens to a general astigmatic beam: We start with Q1 =

 

qxx

0

 

 

 

1 .

 

 

 

 

 

 

The rotation of an x-aligned cylindrical lens, given as Scyl in Table 3.1.15, is performed by multiplying first Scyl with the rotation matrix R of Table 3.1.15, and then the product with the inverse of R is:

Landolt-B¨ornstein

New Series VIII/1A1

Соседние файлы в предмете Оптика