
- •Preface
- •Contents
- •1.1 Fundamentals of the semiclassical laser theory
- •1.1.1 The laser oscillator
- •1.1.2.2 Homogeneous, isotropic, linear dielectrics
- •1.1.2.2.1 The plane wave
- •1.1.2.2.2 The spherical wave
- •1.1.2.2.3 The slowly varying envelope (SVE) approximation
- •1.1.2.3 Propagation in doped media
- •1.1.3 Interaction with two-level systems
- •1.1.3.1 The two-level system
- •1.1.3.2 The dipole approximation
- •1.1.3.2.1 Inversion density and polarization
- •1.1.3.3.1 Decay time T1 of the upper level (energy relaxation)
- •1.1.3.3.1.1 Spontaneous emission
- •1.1.3.3.1.2 Interaction with the host material
- •1.1.3.3.1.3 Pumping process
- •1.1.3.3.2 Decay time T2 of the polarization (entropy relaxation)
- •1.1.4 Steady-state solutions
- •1.1.4.1 Inversion density and polarization
- •1.1.4.2 Small-signal solutions
- •1.1.4.3 Strong-signal solutions
- •1.1.5 Adiabatic equations
- •1.1.5.1 Rate equations
- •1.1.5.2 Thermodynamic considerations
- •1.1.5.3 Pumping schemes and complete rate equations
- •1.1.5.3.1 The three-level system
- •1.1.5.3.2 The four-level system
- •1.1.5.5 Rate equations for steady-state laser oscillators
- •1.1.6 Line shape and line broadening
- •1.1.6.1 Normalized shape functions
- •1.1.6.1.1 Lorentzian line shape
- •1.1.6.1.2 Gaussian line shape
- •1.1.6.1.3 Normalization of line shapes
- •1.1.6.2 Mechanisms of line broadening
- •1.1.6.2.1 Spontaneous emission
- •1.1.6.2.2 Doppler broadening
- •1.1.6.2.3 Collision or pressure broadening
- •1.1.6.2.4 Saturation broadening
- •1.1.6.3 Types of broadening
- •1.1.6.3.1 Homogeneous broadening
- •1.1.6.3.2 Inhomogeneous broadening
- •1.1.6.4 Time constants
- •1.1.7 Coherent interaction
- •1.1.7.1 The Feynman representation of interaction
- •1.1.7.3 Propagation of resonant coherent pulses
- •1.1.7.3.2 Superradiance
- •1.1.8 Notations
- •References for 1.1
- •2.1.1 Introduction
- •2.1.3 Radiometric standards
- •2.1.3.1 Primary standards
- •2.1.3.2 Secondary standards
- •References for 2.1
- •2.2 Beam characterization
- •2.2.1 Introduction
- •2.2.2 The Wigner distribution
- •2.2.3 The second-order moments of the Wigner distribution
- •2.2.4 The second-order moments and related physical properties
- •2.2.4.3 Phase paraboloid and twist
- •2.2.4.4 Invariants
- •2.2.4.5 Propagation of beam widths and beam propagation ratios
- •2.2.5.1 Stigmatic beams
- •2.2.5.2 Simple astigmatic beams
- •2.2.5.3 General astigmatic beams
- •2.2.5.4 Pseudo-symmetric beams
- •2.2.5.5 Intrinsic astigmatism and beam conversion
- •2.2.6 Measurement procedures
- •2.2.7 Beam positional stability
- •References for 2.2
- •3 Linear optics
- •3.1 Linear optics
- •3.1.1 Wave equations
- •3.1.2 Polarization
- •3.1.3 Solutions of the wave equation in free space
- •3.1.3.1 Wave equation
- •3.1.3.1.1 Monochromatic plane wave
- •3.1.3.1.2 Cylindrical vector wave
- •3.1.3.1.3 Spherical vector wave
- •3.1.3.2 Helmholtz equation
- •3.1.3.2.1 Plane wave
- •3.1.3.2.2 Cylindrical wave
- •3.1.3.2.3 Spherical wave
- •3.1.3.2.4.2 Real Bessel beams
- •3.1.3.2.4.3 Vectorial Bessel beams
- •3.1.3.3 Solutions of the slowly varying envelope equation
- •3.1.3.3.1 Gauss-Hermite beams (rectangular symmetry)
- •3.1.3.3.2 Gauss-Laguerre beams (circular symmetry)
- •3.1.3.3.3 Cross-sectional shapes of the Gaussian modes
- •3.1.4.4.2 Circular aperture with radius a
- •3.1.4.4.2.1 Applications
- •3.1.4.4.3 Gratings
- •3.1.5 Optical materials
- •3.1.5.1 Dielectric media
- •3.1.5.2 Optical glasses
- •3.1.5.3 Dispersion characteristics for short-pulse propagation
- •3.1.5.4 Optics of metals and semiconductors
- •3.1.5.6 Special cases of refraction
- •3.1.5.6.2 Variation of the angle of incidence
- •3.1.5.7 Crystal optics
- •3.1.5.7.2 Birefringence (example: uniaxial crystals)
- •3.1.5.8 Photonic crystals
- •3.1.5.9 Negative-refractive-index materials
- •3.1.5.10 References to data of linear optics
- •3.1.6 Geometrical optics
- •3.1.6.1 Gaussian imaging (paraxial range)
- •3.1.6.1.1 Single spherical interface
- •3.1.6.1.2 Imaging with a thick lens
- •3.1.6.2.1 Simple interfaces and optical elements with rotational symmetry
- •3.1.6.2.2 Non-symmetrical optical systems
- •3.1.6.2.3 Properties of a system
- •3.1.6.2.4 General parabolic systems without rotational symmetry
- •3.1.6.2.5 General astigmatic system
- •3.1.6.2.6 Symplectic optical system
- •3.1.6.2.7 Misalignments
- •3.1.6.3 Lens aberrations
- •3.1.7 Beam propagation in optical systems
- •3.1.7.2.1 Stigmatic and simple astigmatic beams
- •3.1.7.2.1.1 Fundamental Mode
- •3.1.7.2.1.2 Higher-order Hermite-Gaussian beams in simple astigmatic beams
- •3.1.7.2.2 General astigmatic beam
- •3.1.7.3 Waist transformation
- •3.1.7.3.1 General system (fundamental mode)
- •3.1.7.3.2 Thin lens (fundamental mode)
- •3.1.7.4 Collins integral
- •3.1.7.4.1 Two-dimensional propagation
- •3.1.7.4.2 Three-dimensional propagation
- •3.1.7.5 Gaussian beams in optical systems with stops, aberrations, and waveguide coupling
- •3.1.7.5.1 Field distributions in the waist region of Gaussian beams including stops and wave aberrations by optical system
- •3.1.7.5.2 Mode matching for beam coupling into waveguides
- •3.1.7.5.3 Free-space coupling of Gaussian modes
- •References for 3.1
- •4.1 Frequency conversion in crystals
- •4.1.1 Introduction
- •4.1.1.1 Symbols and abbreviations
- •4.1.1.1.1 Symbols
- •4.1.1.1.2 Abbreviations
- •4.1.1.1.3 Crystals
- •4.1.1.2 Historical layout
- •4.1.2 Fundamentals
- •4.1.2.1 Three-wave interactions
- •4.1.2.2 Uniaxial crystals
- •4.1.2.3 Biaxial crystals
- •4.1.2.5.1 General approach
- •4.1.3 Selection of data
- •4.1.5 Sum frequency generation
- •4.1.7 Optical parametric oscillation
- •4.1.8 Picosecond continuum generation
- •References for 4.1
- •4.2 Frequency conversion in gases and liquids
- •4.2.1 Fundamentals of nonlinear optics in gases and liquids
- •4.2.1.1 Linear and nonlinear susceptibilities
- •4.2.1.2 Third-order nonlinear susceptibilities
- •4.2.1.3 Fundamental equations of nonlinear optics
- •4.2.1.4 Small-signal limit
- •4.2.1.5 Phase-matching condition
- •4.2.2 Frequency conversion in gases
- •4.2.2.1 Metal-vapor inert gas mixtures
- •4.2.2.3 Mixtures of gaseous media
- •References for 4.2
- •4.3 Stimulated scattering
- •4.3.1 Introduction
- •4.3.1.1 Spontaneous scattering processes
- •4.3.1.2 Relationship between stimulated Stokes scattering and spontaneous scattering
- •4.3.2 General properties of stimulated scattering
- •4.3.2.1 Exponential gain by stimulated Stokes scattering
- •4.3.2.2 Experimental observation
- •4.3.2.2.1 Generator setup
- •4.3.2.2.2 Oscillator setup
- •4.3.2.3 Four-wave interactions
- •4.3.2.3.1 Third-order nonlinear susceptibility
- •4.3.2.3.3 Higher-order Stokes and anti-Stokes emission
- •4.3.2.4 Transient stimulated scattering
- •4.3.3 Individual scattering processes
- •4.3.3.1 Stimulated Raman scattering (SRS)
- •4.3.3.2 Stimulated Brillouin scattering (SBS) and stimulated thermal Brillouin scattering (STBS)
- •4.3.3.3 Stimulated Rayleigh scattering processes, SRLS, STRS, and SRWS
- •References for 4.3
- •4.4 Phase conjugation
- •4.4.1 Introduction
- •4.4.2 Basic mathematical description
- •4.4.3 Phase conjugation by degenerate four-wave mixing
- •4.4.4 Self-pumped phase conjugation
- •4.4.5 Applications of SBS phase conjugation
- •4.4.6 Photorefraction
- •References for 4.4

Ref. p. 131] |
3.1 Linear optics |
123 |
|
|
|
3.1.7.2.1.2 Higher-order Hermite-Gaussian beams in simple astigmatic beams
Treatment of the x- or y-component of Hermite-Gaussian-beams after (3.1.27): The complex q-
parameter transformation is treated as above, the fundamental mode part is given as above, the
√
new beam radius for the Hermite polynom of order m, Hm( 2 x/w Ix) is calculated from the new q-parameter and the phase is derived from it, too [70Col].
For complex Hermite-Gaussian beams: see [86Sie].
3.1.7.2.2 General astigmatic beam
In Table 3.1.19 the Q−1-matrix transfer for general astigmatic beams is given. The matrix Q−1 is the matrix scheme of inverses of q-parameters and no inverted matrix [96Gro].
Table 3.1.19. Q−1-matrix transfer for general astigmatic beams.
Given |
Propagated field |
|
|
– General Gaussian beam in the input plane:
|
k |
1 r |
|
|
U I(r) = exp −i |
|
r Q−I |
, (3.1.118) |
|
2 |
r (x, y) the transverse position vector
perpendicular to the propagation axis z .
– Q−I 1-matrix:
|
|
|
1 |
1 |
|
|
|
Q−1 |
= |
qxx |
|
qxy |
(3.1.119) |
||
I |
|
|
1 |
1 |
|
|
|
|
|
qxy |
|
qyy |
|
|
|
|
|
|
|
|
|
|
|
with qxx, qxy , qyy complex terms describing the general amplitudeand phasedistribution of U I , and
r Q−1 r = |
x2 |
+ 2 |
xy |
+ |
y2 |
. (3.1.120) |
|
|
|
||||
I |
qxx |
qxy |
qyy |
|
||
|
|
–S-matrix of the optical system (see Table 3.1.15) with
A B
S = C D
– Transformation of the Q−I 1-matrix to its output value:
Q−O1 = C + D Q−I |
1 A + B Q−I 1 −1 , |
(3.1.121) |
||
see [88Sim, 96Gro, 05Hod]. |
|
|||
– Field in the output plane: |
|
|||
|
|
|
||
|
|
k |
|
|
U O(r) = exp −i |
|
2 |
r Q−O1 r . |
(3.1.122) |
after (3.1.99).
Example 3.1.16. Transformation of a simple astigmatic Gaussian beam (no mixing between x and y)
|
! |
1 |
qyy " |
||
I |
0 |
||||
with a θ-rotated cylindrical lens to a general astigmatic beam: We start with Q−1 = |
|
qxx |
0 |
|
|
|
|
1 . |
|||
|
|
|
|
|
|
The rotation of an x-aligned cylindrical lens, given as Scyl in Table 3.1.15, is performed by multiplying first Scyl with the rotation matrix R of Table 3.1.15, and then the product with the inverse of R is:
Landolt-B¨ornstein
New Series VIII/1A1