Solid-Phase Synthesis and Combinatorial Technologies
.pdfREFERENCES 573
138.Sparks, A. B., Hoffman, N. G., McConnell, S. J., Fowlkes, D. M. and Kay, B. K., Nat. Biotech. 14, 741–744 (1996).
139.Crameri, R. and Walter, G., Comb. Chem. High Throughput Screening 2, 63–72 (1999).
140.Sche, P. P., McKenzie, K. M., White, J. D. and Austin, D. J., Chem. Biol. 6, 707–716 (1999).
141.Ellington, A. D., Curr. Biol. 4, 427–429 (1994).
142.Uphoff, K. W., Bell, S. D. and Ellington, A. D.,Curr. Opin. Struct. Biol. 6, 281–288 (1996).
143.Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. and Cech, T. R., Cell 31, 147–157 (1982).
144.Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S., Cell 35, 849–857 (1983).
145.Mills, D. R., Peterson, R. G. and Spiegelman, S., Proc. Natl. Acad. Sci. USA 58, 217–224 (1967).
146.Conrad, R. C., Giver, L., Tian, Y. and Ellington, A. D., Methods Enzymol. 267, 336–367 (1996).
147.Osborne, S. E. and Ellington, A. D., Chem. Rev. 97, 349–370 (1997).
148.Eaton, B. E., Curr. Opin. Chem. Biol. 1, 10–16 (1997).
149.Mei, H.-Y. and Czarnik, A. W., in Combinatorial Chemistry and Molecular Diversity in Drug Discovery, E. M. Gordon and J. F. Kerwin Jr. (Eds.). Wiley, New York, 1998, pp. 165–178.
150.Bacher, J. M. and Ellington, A. D., Drug Disc. Today 3, 265–273 (1998).
151.Famulok, M. and Jenne, A., Curr. Opin. Chem. Biol. 2, 320–327 (1998).
152.Famulok, M., Ernst Schering Res. Found. Workshop 26, 135–149 (1998).
153.Famulok, M., Curr. Opin. Struct. Biol. 9, 324–329 (1999).
154.Jaschke, A., Frauendorf, C. and Hausch, F., Synlett, 825–833 (1999).
155.Jayasena, S. D., Clin. Chem. 45, 1628–1650 (1999).
156.Haller, A. A. and Sarnow, P., Proc. Natl. Acad. Sci. USA 94, 8521–8526 (1997).
157.Burke, D. H. and Hoffman, D. C., Biochemistry 37, 4653–4663 (1998).
158.Lorsch, J. R. and Szostak, J. W., Biochemistry 33, 973–982 (1994).
159.Burgstaller, P. and Famulok, M., Angew. Chem., Int. Ed. Engl. 33, 1084–1087 (1994).
160.Zimmermann, G. R., Jenison, R. D., Wick, C. L., Simorre, J.-P. and Pardi, A.,Nat. Struct. Biol. 4, 644–649 (1997).
161.Sassanfar, M. and Szostak, J. W., Nature 364, 550–553 (1993).
162.Ulrich, H., Ippolito, J. E., Pagan, O. R., Eterovic, V. A., Hann, R. M., Shi, H., Lis, J. T.; Eldefrawi, M. E. and Hess, G. P., Proc. Natl. Acad. Sci. USA 95, 14051–14056 (1998).
163.Burke, D. H., Hoffman, D. C., Brown, A., Hansen, M., Pardi, A. and Gold, L.,Chem. Biol. 4, 833–843 (1997).
164.Lato, S. M., Boles, A. R. and Ellington, A. D., Chem. Biol. 2, 291–303 (1995).
165.Wang, Y. and Rando, R. R., Chem. Biol. 2, 281–290 (1995).
166.Famulok, M. and Huttenhofer, A., Biochemistry 35, 4265–4270 (1996).
167.Hofstadler, S. A., Sannes-Lowery, K. A., Crooke, S. T., Ecker, D. J., Sasmor, H., Manalili, S. and Griffey, R. H., Anal. Chem. 71, 3436–3440 (1999).
574BIOSYNTHETIC COMBINATORIAL LIBRARIES
168.Lebruska, L. L. and Maher, L. J., Biochemistry 38, 3168–3174 (1999).
169.O’Connell, D., Koenig, A., Jennings, S., Hicke, B., Han, H.-L., Fitzwater, T., Chang, Y.-F., Varki, N., Parma, D. and Varki, A., Proc. Natl. Acad. Sci. USA 93, 5883–5887 (1996).
170.Brown, D., Brown, J., Kang, C., Gold, L. and Allen, P.,J. Biol. Chem. 272, 14969–14974 (1997).
171.Gal, S. W., Amontov, S., Urvil, P. T., Vishnuvardhan, D., Nishikawa, F., Kumar, P. K. R. and Nishikawa, S., Eur. J. Biochem. 252, 553–562 (1998).
172.Klug, S. J., Huttenhofer, A. and Famulok, M., RNA 5, 1180–1190 (1999).
173.Shi, H., Hoffman, B. E. and Lis, J. T.,Proc. Natl. Acad. Sci. USA 96, 10033–10038 (1999).
174.Hirao, I., Spingola, M., Peabody, D. and Ellington, A. D.,Mol. Diversity 4, 75–89 (1999).
175.Paillart, J. C., Marquet, R., Skripkin, E., Ehresmann, C. and Ehresmann, B., Biochimie 78, 639–653 (1996).
176.Boiziau, C., Dausse, E., Yurchenko, L. and Toulme, J.-J.,J. Biol. Chem. 274, 12730–12737 (1999).
177.Ferber, M. J. and Maher, L. J., J. Mol. Biol. 279, 565–576 (1998).
178.Homann, M. and Goringer, H. U., Nucleic Acids Res. 27, 2006–2014 (1999).
179.Bruno, J. G. and Kiel, J. L., Biosens. Bioelectron. 14, 457–464 (1999).
180.Davis, K. A., Lin, Y., Abrams, B. and Jayasena, S. D., Nucleic Acids Res. 26, 3915–3924 (1998).
181.Smith, D., Kirschenheuter, G. P., Charlton, J., Guidot, D. M. and Repine, J. E., Chem. Biol. 2, 741–750 (1995).
182.Charlton, J., Sennello, J. and Smith, D., Chem. Biol. 4, 809–816 (1997).
183.Bridonneau, P., Chang, Y.-F., O’Connell, D., Gill, S. C., Snyder, D. W., Johnson, L., Goodson, T. Jr., Herron, D. K. and Parma, D. H., J. Med. Chem. 41, 778–786 (1998).
184.Lee, S. and Sullenger, B. A., Nat. Biotechnol. 15, 41–45 (1997).
185.Draheim, S. E., Bach, N. J., Dillard, R. D., Berry, D. R., Carlson, D. G., Chirgadze, N. Y., Clawson, D. K., Hartley, L. W., Johnson, L. M. et al.,J. Med. Chem. 39, 5159–5175 (1996).
186.King, D. J., Ventura, D. A., Brasier, A. R., Gorenstein, D. G., Biochemistry 37, 16489– 16493 (1998).
187.Jhaveri, S., Olwin, B. and Ellington, A. D.,Bioorg. Med. Chem. Lett. 8, 2285–2290 (1998).
188.Schumacher, T. N. M., Mayr, L. M., Minor, D. L. Jr., Milhollen, M. A., Burgess, M. W. and Kim, P. S., Science 271, 1854–1857 (1996).
189.Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A. and Fuerste, J. P.,Nat. Biotechnol. 14, 1112–1115 (1996).
190.Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A. and Fuerste, J. P.,Nat. Biotechnol. 14, 1116–1119 (1996).
191.Williams, K. P., Liu, X.-H., Schumacher, T. N. M., Lin, H. Y., Ausiello, D. A., Kim, P. S. and Bartel, D. P., Proc. Natl. Acad. Sci. USA 94, 11285–11290 (1997).
192.Joyce, G. F. and Orgel, L. E., The RNA World, R. F. Gesteland and J. F. Atkins (Eds.). Cold Spring Harbor Lab., Cold Spring Harbor, NY, 1993, pp. 1–25.
193.Breaker, R. R., Chem. Rev. 97, 371–390 (1997).
194.Lorsch, J. R. and Szostak, J. W., Acc. Chem. Res. 29, 103–110 (1996).
195.Yarus, M., Curr. Opin. Chem. Biol. 3, 260–267 (1999).
REFERENCES 575
196.Li, Y. and Breaker, Curr. Opin. Struct. Biol. 9, 315–323 (1999).
197.Tanner, N. K., FEMS Microb. Rev. 23, 257–275 (1999).
198.Carola, C. and Eckstein, F., Curr. Opin. Chem. Biol. 3, 274–283 (1999).
199.Soukup, G. A. and Breaker, R. R., Trends Biotechnol. 17, 469–476 (1999).
200.Beaudry, A. A. and Joyce, G. F., Science 257, 635–641 (1992).
201.Tsang, J. and Joyce, G. F., Biochemistry 33, 5966–5973 (1994).
202.Tsang, J. and Joyce, G. F., J. Mol. Biol. 262, 31–42 (1996).
203.Zaug, A. J., Been, M. D. and Cech, T. R., Nature 324, 429–433 (1986).
204.Ekland, E. H. and Bartel, D. P., Nucleic Acids Res. 23, 3231–3238 (1995).
205.Schmitt, T. and Lehman, N., Chem. Biol. 6, 857–869 (1999).
206.Ordoukhanian, P. and Joyce, G. F., Chem. Biol. 6, 881–889 (1999).
207.Tuschl, T., Sharp, P. A. and Bartel, D. P., EMBO J. 17, 2637–2650 (1998).
208.Zarrinkar, P. P. and Sullenger, B. A., Biochemistry 38, 3426–3432 (1999).
209.Pierce, M. L. and Ruffner, D. E., Nucleic Acids Res. 26, 5093–5101 (1998).
210.Putlitz, J. Z., Yu, Q., Burke, J. M. and Wands, J. R., J. Virol. 73, 5381–5387 (1999).
211.Cole, K. B. and Dorit, R. L., J. Mol. Biol. 292, 931–944 (1999).
212.Landweber, L. F. and Pokrovskaya, I. D., Proc. Natl. Acad. Sci. USA 96, 173–178 (1999).
213.Kazakov, S. and Altman, S., Proc. Natl. Acad. Sci. USA 89, 7939–7943 (1992).
214.Dange, V., Van Atta, R. B. and Hecht, S. M., Science 248, 585–588 (1990).
215.Vaish, N. K., Heaton, P. A., Fedorova, O. and Eckstein, F., Proc. Natl. Acad. Sci. USA 95, 2158–2162 (1998).
216.Yu, Q., Pecchia, D. B., Kingsley, S. L., Heckman, J. E. and Burke, J. M., J. Biol. Chem. 273, 23524–23533 (1998).
217.Robertson, M. P. and Ellington, A. D., Nat. Biotechnol. 17, 62–66 (1999).
218.Santoro, S. W. and Joyce, G. F., Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).
219.Bartel, D. P., Cold Spring Harbor Monogr. Ser. 37, 143–162 (1999).
220.Pitsch, S., Eschenmoser, A., Gedulin, B., Hui, S. and Arrhenius, G., Origin Life Evol. Biosphere 25, 297–334 (1995).
221.Robertson, M. P. and Miller, S. L., Nature 375, 772–774 (1995).
222.Unrau, P. J. and Bartel, D. P., Nature 395, 260–263 (1998).
223.Mizuno, Y., Chem. Pharm. Bull. 10, 647–652 (1962).
224.Zakour, R. A. and Loeb, L. A., Nature 295, 708–710 (1982).
225.Zhang, B. and Cech, T. R., Nature 390, 96–100 (1997).
226.Illangasekare, M., Sanchez, G., Nickles, T. and Yarus, M., Science 267, 643–647 (1995).
227.Lohse, P. A. and Szostak, J. W., Nature 381, 442–444 (1996).
228.Wiegand, T. W., Janssen, R. C. and Eaton, B. E., Chem. Biol. 4, 675–683 (1997).
229.Jenne, A. and Famulok, M., Chem. Biol. 5, 23–34 (1998).
230.Breaker, R. R. and Joyce, G. F., J. Mol. Evolut. 40, 551–558 (1995).
231.Tang, J. and Breaker, R. R., Chem. Biol. 4, 453–459 (1997).
232.Roth, A. and Breaker, R. R., Proc. Natl. Acad. Sci. USA 95, 6027–6031 (1998).
576BIOSYNTHETIC COMBINATORIAL LIBRARIES
233.Seelig, B. and Jaschke, A., Chem. Biol. 6, 167–176 (1999).
234.Seelig, B. and Jaschke, A., Bioconjugate Chem. 10, 371–378 (1999).
235.Tarasow, T. M., Tarasow, S. L. and Eaton, B. E., Nature 389, 54–57 (1997).
236.Chun, S.-M., Jeong, S., Kim, J.-M., Chong, B.-O., Park, Y.-K., Park, H. and Hu, J.,J. Am. Chem. Soc. 121, 10844–10845 (1999).
237.Roberts, R. W. and Ja, W. W., Curr. Opin. Struct. Biol. 9, 521–529 (1999).
238.Waterman, P. G., Adv. Drug Discovery Tech., 13–23 (1998).
239.Fallis, A. G., Can. J. Chem. 77, 159–177 (1999).
240.Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J. and Katz, L., Science 252, 675–679 (1991).
241.Khosla, C., in Combinatorial Chemistry and Molecular Diversity in Drug Discovery , E.
M.Gordon and J. F. Kerwin Jr. (Eds.). Wiley, New York, 1998, pp. 401–417.
242.O’Hagan, D., The Polyketide Metabolites. Ellis Horwood, Chichester, UK, 1991.
243.Katz, L. and Donadio, S., Annu. Rev. Microbiol. 47, 875–912 (1993).
244.O’Hagan, D., Nat. Prod. Rep. 12, 1–32 (1995).
245.Hutchinson, C. R. and Fujii, I., Annu. Rev. Microbiol. 49, 201–238 (1995).
246.McDaniel, R., Ebert-Khosia, S., Hopwood, D. A. and Khosla, C.,Science 262, 1546–1550 (1993).
247.Kao, C. M., Katz, L. and Khosla, C., Science 265, 509–512 (1994).
248.Tsoi, C. J. and Khosla, C., Chem. Biol. 2, 355–362 (1995).
249.Rohr, J., Angew. Chem., Int. Ed. Engl. 34, 881–885 (1995).
250.Rohr, J., Mendez, C. and Salas, J. A., Bioorg. Chem. 27, 41–54 (1999).
251.Hutchinson, C. R., Proc. Natl. Acad. Sci. USA 96, 3336–3338 (1999).
252.Khosla, C., Gokhale, R. S., Jacobsen, J. R. and Cane, D. E., Annu. Rev. Biochem. 68, 219–253 (1999).
253.McDaniel, R., Ebert-Khosia, S., Hopwood, D. A. and Khosla, C., Nature 375, 549–554 (1995).
254.Yu, T.-W., Shen, Y., McDaniel, R., Floss, H. G., Khosla, C., Hopwood, D. A. and Moore,
B.S., J. Am. Chem. Soc. 120, 7749–7759 (1998).
255.Wohlert, S.-E., Blanco, G., Lombo, F., Fernandez, E., Brana, A. F., Reich, S., Udvarnoki, G., Mendez, C., Decker, H., Frevert, J., Salas, J. A. and Rohr, J., J. Am. Chem. Soc. 120, 10596–10601 (1998).
256.Prado, L., Lombo, F., Brana, A. F., Mendez, C., Rohr, J. and Salas, J. A.,Mol. Gen. Genet. 261, 216–225 (1999).
257.Shen, Y., Yoon, P., Yu, T.-W., Floss, H. G., Hopwood, D. and Moore, B. S., Proc. Natl. Acad. Sci. USA 96, 3622–3627 (1999).
258.Bangera, M. G. and Thomashow, L. S., J. Bacteriol. 181, 3155–3163 (1999).
259.Kennedy, J., Auclair, K., Kendrew, S. G., Park, C., Vederas, J. C. and Hutchinson, C. R., Science 284, 1368–1372 (1999).
260.Hendrickson, L., Davis, C. R., Roach, C., Nguyen, D. K., Aldrich, T., McAda, P. C. and Reeves, C. D., Chem. Biol. 6, 429–439 (1999).
261.Zawada, R. J. X. and Khosla, C., Chem. Biol. 6, 607–615 (1999).
REFERENCES 577
262.Kunnari, T., Kantola, J., Ylihonko, K., Klika, K. D., Mantsala, P. and Hakala, J.,J. Chem. Soc., Perkin Trans. 2, 1649–1652 (1999).
263.Olano, C., Lomovskaya, N., Fonstein, L., Roll, J. T. and Hutchinson, C. R., Chem. Biol. 6, 845–855 (1999).
264.Petkovic, H., Thamchaipenet, A., Zhou, L.-H., Hranueli, D., Raspor, P. , Waterman, P. G. and Hunter, I. S., J. Biol. Chem. 274, 32829–32834 (1999).
265.Ferrer, J.-L., Jez, J. M., Bowman, M. E., Dixon, R. A. and Noel, J. P.,Nat. Struct. Biol. 6, 775–784 (1999).
266.Cortes, J., Haydock, S. F., Roberts, G. A., Bevitt, D. J. and Leadlay, P. F., Nature 348, 176–178 (1990).
267.Caffrey, P., Bevitt, D. J., Staunton, J. and Leadlay, P. F., FEBS Lett. 304, 225–228 (1992).
268.Weissman, K. J., Bycroft, M., Cutter, A. L., Hanefeld, U., Frost, E. J., Timoney, M. C., Harris, R., Handa, S., Roddis, M., Staunton, J. and Leadlay, P. F.,Chem. Biol. 5, 743–754 (1998).
269.Gokhale, R. S., Hunziker, D., Cane, D. E. and Khosla, C.,Chem. Biol. 6, 117–125 (1999).
270.Holzbaur, I. E., Harris, R. C., Bycroft, M., Cortes, J., Bisang, C., Staunton, J., Rudd, B. A. M. and Leadlay, P. F., Chem. Biol. 6, 189–195 (1999).
271.Bisang, C., Long, P. F., Cortes, J., Westcott, J., Crosby, J., Matharu, A.-L., Cox, R. J., Simpson, T. J., Staunton, J. and Leadlay, P. F., Nature 401, 502–505 (1999).
272.Ranganathan, A., Timoney, M., Bycroft, M., Cortes, J., Thomas, I. P., Wilkinson, B., Kellenberger, L., Hanefeld, U., Galloway, I. S., Staunton, J. and Leadlay, P. F.,Chem. Biol. 6, 731–741 (1999).
273.Khosla, C. and Zawada, R. J. X., Trends Biotechnol. 14, 335–341 (1996).
274.Leadlay, P. F., Curr. Opin. Chem. Biol. 1, 162–168 (1997).
275.Katz, L., Chem. Rev. 97, 2557–2576 (1997).
276.Khosla, C., Chem. Rev. 97, 2577–2590 (1997).
277.Staunton, J., Curr. Opin. Chem. Biol. 2, 339–345 (1998).
278.Cane, D. E., Walsh, C. T. and Khosla, C., Science 282, 63–68 (1998).
279.Katz, L. and McDaniel, R., Med. Res. Rev. 19, 543–558 (1999).
280.MacNeil, D. J., Occi, J. L., Gewain, K. M., MacNeil, T., Gibbons, P. H., Ruby, C. L. and Danis, S. J., Gene 115, 119–125 (1992).
281.Swan, D. G., Rodriguez, A. M., Vilches, C., Mendez, C. and Salas, J. A.,Mol. Gen. Genet. 242, 358–362 (1994).
282.Aparicio, J. F. and Leadlay, P. F., Gene 169, 9–16 (1996).
283.Xue, Y., Zhao, L., Liu, H.-W. and Sherman, D. H., Proc. Natl. Acad. Sci. USA 95, 12111–12116 (1998).
284.Aparicio, J. F., Colina, A. J., Ceballos, E. and Martin, J. F., J. Biol. Chem. 274, 10133– 10139 (1999).
285.Tang, L., Fu, H., Betlach, M. C. and McDaniel, R., Chem. Biol. 6, 553–558 (1999).
286.Zhao, L., Ahlert, J., Xue, Y., Thorson, J. S., Sherman, D. H. and Liu, H.-W.,J. Am. Chem. Soc. 121, 9881–9882 (1999).
287.Yu, T., Shen, Y., Doi-Katayama, Y., Tang, L., Park, C., Moore, B. S., Hutchinson, C. R. and Floss, H. G., Proc. Natl. Acad. Sci. USA 96, 9051–9056 (1999).
578BIOSYNTHETIC COMBINATORIAL LIBRARIES
288.Hu, Z., Hunziker, D., Hutchinson, C. R. and Khosla, C., Microbiology 145, 2335–2341 (1999).
289.Shaw-Reid, C. A., Kelleher, N. L., Losey, H. C., Gehring, A. M., Berg, C. and Walsh, C. T., Chem. Biol. 6, 385–400 (1999).
290.Stachelhaus, T., Mootz, H. D. and Marahiel, M. A., Chem. Biol. 9, 493–505 (1999).
291.Hutchinson, C. R., Curr. Opin. Microbiol. 1, 319–329 (1998).
292.Cane, D. E. and Walsh, C. T., Chem. Biol. 6, R319–R325 (1999).
293.Trefzer, A., Bechthold, A. and Salas, J. A., Nat. Prod. Rep. 16, 283–299 (1999).
294.Hallis, T. M. and Liu, H.-W., Acc. Chem. Res. 32, 579–588 (1999).
295.Jacobsen, J. R., Cane, D. E. and Khosla, C., J. Am. Chem. Soc. 120, 9096–9097 (1998).
296.Gokhale, R. S., Tsuji, S. Y., Cane, D. E. and Khosla, C., Science 284, 482–485 (1999).
297.McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M., Betlach, M. and Ashley, G., Proc. Natl. Acad. Sci. USA 96, 1846–1851 (1999).
298.Xue, Q., Ashley, G., Hutchinson, C. R. and Santi, D. V., Proc. Natl. Acad. Sci. USA 96, 11740–11745 (1999).
299.Dordick, J. S., Patil, D. R., Parida, S., Ryu, K. and Rethwisch, D. G., Chem. Ind. 47, 267–292 (1992).
300.Sutherland, A. G., Annu. Rep. Prog. Chem., Sect. B 89, 281–298 (1993).
301.Madigan, M. T. and Marrs, B. L., Sci. Am. 276, 82–87 (1997).
302.Hough, D. W. and Danson, M. J., Curr. Opin. Chem. Biol. 3, 39–46 (1999).
303.Okahata, Y. and Mori, T., Trends Biotechnol. 15, 50–54 (1997).
304.Khmelnitsky, Y. L. and Rich, J. O., Curr. Opin. Chem. Biol. 3, 47–53 (1999).
305.Arnold, F. H. and Volkov, A. A., Curr. Opin. Chem. Biol. 3, 54–59 (1999).
306.Reetz, M. T. and Jaeger, K.-E., Top. Curr. Chem. 200, 31–57 (1999).
307.Dordick, J. S., Khmelnitsky, Y. L. and Sergeeva, M. V.,Curr. Opin. Microbiol. 1, 311–318 (1998).
308.Altreuter, D. H. and Clark, D. S., Curr. Opin. Biotechnol. 10, 130–136 (1999).
309.Khmelnitsky, Y. L., Michels, P. C., Dordick, J. S. and Clark, D. S., inMolecular Diversity and Combinatorial Chemistry: Libraries and Drug Discovery , I. M. Chaiken and K. D. Janda (Eds.). ACS, Washington, DC, 1996, pp. 144–157.
310.Mozhaev, V. V., Budde, C. L., Rich, J. O., Usyatinsky, A. Y., Michels, P. C., Khmelnitsky,
Y.L., Clark, D. S. and Dordick, J. S., Tetrahedron 54, 3971–3982 (1998).
311.Svensson, I., Wehtje, E., Adlercreutz, P. and Mattiasson, B., Biotechnol. Bioeng. 44, 549–556 (1994).
312.Khmelnitski, Y. L., Welch, S. H., Clark, D. S. and Dordick, J. S., J. Am. Chem. Soc. 116, 2647–2648 (1994).
313.Michels, P. C., Khmelnitsky, Y. L., Dordick, J. S. and Clark, D. S.,Trends Biotechnol. 16, 210–215 (1998).
314.Khmelnitsky, Y. L., Budde, C., Arnold, J. M., Usyatinsky, A., Clark, D. S. and Dordick,
J.S., J. Am. Chem. Soc. 119, 11554–11555 (1997).
315.Krstenansky, J. L. and Khmelnitsky, Y.L., Bioorg. Med. Chem. 7, 2157–2162 (1999).
580 MATERIALS AND POLYMERIC COMBINATORIAL LIBRARIES
roelectrics/dielectrics, or liquid crystals, or polymeric materials are among the most relevant targets. The possibilities offered by the combination of stable elements are almost infinite, in that tens of elements can be combined in almost any relative proportion. Each resulting material is by definition different and is characterized by properties that can be exploited and optimized for a specific application.
Unfortunately, the ability to rationally predict the properties of a specific material composition is currently poor, and thus the rational design of enhanced materials is, at best, extremely difficult and long. Moreover, the synthesis and the characterization of such materials using classical inorganic SP chemistry methods is complex and time consuming. Full exploitation of material composites thus requires significantly higher throughput synthetic and screening methods, both to prepare large numbers of materials and to construct better predictive models to help drive the rational selection of elements and relative abundances in a composite. In this context combinatorial technologies appear ideally suited to boost the discovery of new materials via their synthesis, characterization, and screening.
Organic synthesis of a target molecule requires the design of a synthetic route, the selection of suitable, commercially available precursors, and the optimization of reaction conditions. It requires reaction monitoring and product characterization with various analytical techniques as well as work-up procedures to purify and isolate the target. The large amount of available knowledge, in terms of organic reaction mechanisms and the reactivity and stability of organic molecules, allows chemists to plan and carry out the above-mentioned steps, often even optimizing reported protocols according to target-specific needs. The transfer of classical protocols to solutionor solid-phase combinatorial protocols is also becoming an assessed field, as reported in previous chapters.
Inorganic solid-state chemistry is much simpler, in that only a few general synthetic methods exist to prepare a material of virtually any composition. The main issue is the preparation of a homogeneous material where all the components have completely diffused in the mixture to obtain the desired composition. Commonly encountered diffusion barriers could produce nonhomogeneous mixtures with varying compositions and thus prevent the synthesis of the desired material. Classical solid-state synthetic methods are based on intimate mixing and heating of finely powdered inorganic solids to create homogeneous new composites. They are hampered by the macroscopic size of the particles and often do not provide high-quality materials. A more promising technique is based on the sequential deposition of thin films of each component of the desired composite (16–18). The reduced thickness of the resulting film, typically in the range of several atomic layers, allows the total diffusion of each component in the film with no resistance. As of today, all the reported efforts in combinatorial materials science involving solid reagents have used thin-film deposition techniques, which are described in more detail in the next section. Liquid-phase techniques have also been used with success for combinatorial applications in a few reports and are thus also reported.
