Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Solid-Phase Synthesis and Combinatorial Technologies

.pdf
Скачиваний:
20
Добавлен:
15.08.2013
Размер:
7.21 Mб
Скачать

10.4 COMBINATORIAL BIOCATALYSIS 563

conversion of substrates under mild conditions, the absence of side-products, their complete regioand stereoselectivity, and the broad substrate specificity that is common for many enzymes. Their use for combinatorial purposes, especially on complex substrates bearing functional groups susceptible to enzymatic reactions, could allow a series of modifications of the original scaffold, including sequential multiple transformations to be carried out. A general scheme for so-called combinatorial biocatalysis (308) is depicted in Fig. 10.50, showing the parallel with natural evolution in living cells (left) and illustrating the selection of drug properties from chemical leads (right). Combinatorial biocatalysis has been applied to both the unbiased derivatization of small organic scaffolds and to the focused decoration of complex natural products, and both approaches are described through consideration of two examples in the following sections.

10.4.2 An Example: Synthesis of a Small Molecule–Derived Biocatalysis

Library

Khmelnitsky et al. (309) reported the synthesis of solution-phase libraries via combinatorial biocatalysis using a number of different substrates. One of these, bicy- clo[2.2.2]oct-5-ene-2,3-trans dimethanol (BOD, 10.102), is shown in Fig. 10.51 together with the biotransformation strategy that was applied. The selected reactions

 

DNA

 

cDNA

 

Transcription/

 

In vitro/in vivo

 

Translation

 

Expression

 

ENZYMES

 

ENZYMES

nutrients

Biosynthesis/

leads

Combinatorial

Metabolic pathways

biocatalysis

 

BIOMOLECULES

 

MODIFIED LEADS

 

Biological

 

Biological

 

functions

 

screening

CELLULAR EFFECTS

 

DRUG-LIKE LEADS

LIVING

REACTION

CELL

VESSEL

Figure 10.50 Combinatorial biocatalysis: comparison with living cell processes.

564 BIOSYNTHETIC COMBINATORIAL LIBRARIES

OH

OH

10.102

Halohydration

Glycosylation

Acylation I

Glycosylation

Acylation I

Acylation I Halohydration

Acylation II

 

 

 

Acylation II

Acylation II

 

L30 = 1222 discretes

Figure 10.51 Combinatorial biocatalysis: synthesis of the BOD-focused biocatalytic discrete library L30.

introduced new functional groups on BOD (halohydration) or selectively functionalized one of the existing alcoholic functions (glycosylation, acylation). The reactions were carried out either in organic or in aqueous solvents, and the experimental conditions were adjusted to take account of the stability of the enzyme and the solubility of the substrate. Each biotransformation was monitored using chromatographic methods, and the final products were characterized by MS and NMR. The different sequence of enzymes used and the specificity of each of them produced a large, diverse library of BOD analogues. Some selected structures of this biotransformation library L30 (1222 derivatives in total) are shown in Fig. 10.52 to illustrate the variety of functional groups, products, and physicochemical properties that can be obtained by such an approach. It is noteworthy that all the isolated compounds are also optically active.

Khmelnitsky also reported using adenosine and 2,3-(methylene dioxy)benzaldehyde as substrates to create libraries of 92 and 457 compounds, respectively. Taxol has been acylated to give a library of 200 compounds, among which two showed a significant improvement in water solubility compared to the parent compound.

10.4.3 An Example: Synthesis of a Bergenin-Derived Library By Combinatorial Biocatalysis

Mozhaev et al. (310) have reported the synthesis of an 167-member, focused library L31 obtained by biocatalytic manipulation of bergenin, a polyhydroxylated flavonoid

 

 

 

 

10.4

COMBINATORIAL BIOCATALYSIS 565

 

 

 

 

STRUCTURES FROM L30:

 

 

 

 

 

 

HO

 

 

 

 

HO

O

OH

HO

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

OH

 

 

 

OH

X

OH

 

 

 

X

 

OH

 

 

 

 

 

 

 

 

 

 

Halohydration

 

Halohydration

 

 

 

 

 

Glycosylation

 

 

 

O

 

 

 

HO

 

 

O

 

 

X

 

 

 

O

O

 

 

 

 

 

 

 

 

 

HO

OH

 

X

 

OH

 

HO

HO

 

 

 

 

OH

 

Halohydration

 

OH

 

 

 

Acylation I

 

 

Glycosylation

 

 

 

 

 

 

 

 

 

 

Halohydration

 

 

 

 

 

O

N

 

 

 

 

 

 

 

 

O O

 

 

O

O

HO

HO

OH

O

Cl

O

 

 

 

OH

O

 

O

 

 

 

 

Glycosylation

Acylation I Acylation I

Acylation II

Figure 10.52 Combinatorial biocatalysis: structures of several individuals from the biocatalytic focused discrete library L30.

(10.103, Fig. 10.53). A thorough search among commercially available acylating enzymes was carried out to select those able to regioselectively acylate any of the five OH groups. However, although many 11-regioselective enzymes able to discriminate the primary OH from the others were found, only one 4,11-diacylating enzyme, subtilisin Carlsberg, was found that was able to acylate any of the other hydroxyls. The enzymes were purchased and immobilized (311) or lyophilized in the presence of KCl (312) to facilitate handling and to increase their catalytic activity. Various chemical conditions for acylation of 10.103 were also attempted, but invariably only mixtures of mono-, di-, and triacylated bergenins were obtained.

The library synthetic scheme is reported in Fig. 10.53. The synthesis was performed in 96-well plates using an automated liquid dispensing unit for sampling liquid aliquots. Bergenin was first submitted to 11-regioselective acylation with a mixture of four immobilized lipases (step a) and the acyl donor monomer set M1 (12 representatives, Fig. 10.54) in organic solvents, using 168 reaction wells. Purification of the

566 BIOSYNTHETIC COMBINATORIAL LIBRARIES

 

 

OH

 

R1

O

 

 

OH O

OH

 

O

OH

 

 

 

 

OH

O

 

MeO

H

 

a,b

H

 

 

 

OH

 

MeO

OH

 

 

 

M1

 

 

HO

O

 

HO

O

 

 

 

 

 

 

 

O

 

 

 

O

 

10.103

 

 

10.104

 

 

 

 

 

 

 

 

 

 

12 compounds

 

 

R1

O

 

 

HO

 

 

 

 

 

 

 

O

 

OH

 

OH

 

O

 

OH O

O

 

OH

O

 

H

 

 

H

 

 

e,b MeO

O

R2

c,d MeO

 

O

R2

 

 

 

O

 

M1

 

O

 

HO

 

HO

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

10.106

 

 

10.105

 

 

 

 

 

 

12 compounds

 

 

144 compounds

 

 

 

 

 

 

 

L31 = 10.104+10.105+10.106 = 167 discretes (one non-confirmed diacylated library member)

a:lipase catalytic mixture (PS30, FAP-15, Chirazyme L-2, Chirazyme L-9), acetonitrile, 45ºC;

b:separation of the immobilized enzyme mixture by filtration; c: Subtilisin Carlsberg/95% KCl, acetonitrile, toluene, DMSO, 45ºC; d: separation of liophilized subtilisin by centrifugation; e: lipase mixture

as in step a, acetonitrile/water 98/2, 45ºC, 96 hrs.

Figure 10.53 Synthesis of the bergenin-focused discrete library L31 using combinatorial biocatalysis.

products (step b) included removal of the immobilized enzymes by filtration of the solutions through the filter of the plates, evaporation of solvents and extraction of the excess of the acyl donor with n-hexane. Twelve wells containing twelve 11-acyl bergenins 10.104 were analyzed and archived, while the monoacylated residues in the other wells were treated with lyophilized subtilisin Carlsberg and the same acyl donor set M1 (step c) followed by centrifugation to remove the enzyme (step d). One hundred and forty-four wells containing all the possible combinations of homoand hetero- 4,11-diacylated bergenins 10.105 were characterized and archived, while the remaining 12 were treated with the same enzyme cocktail used in step a but in presence of water (step e). In this case, the 11-acyl group was regioselectively hydrolyzed and twelve 4-acylated bergenins 10.106 were obtained after the usual purification procedure (step b, Fig. 10.53).

Only one diacylated derivative out of the 168 reaction products in L31 was not confirmed after HPLC/MS quality control, probably due to the steric hindrance of the acyl donor, whereas all the other library individuals were obtained in 60–90% yields

 

 

 

 

 

REFERENCES 567

vinyloxy

 

 

 

 

 

leaving group

 

M1:

 

 

 

O

O

 

O

O

 

O

O

 

O

O

 

O

O

 

 

O

 

 

 

 

O

O

 

O

O

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

O

 

TFethyl

O

Cl

O

O

 

 

 

leaving group

 

 

 

 

 

O

O

O

O

O

 

N

 

 

 

 

 

CF3

O

F3C O

O CF3 F3C O

O CF3

 

 

N

Figure 10.54 Monomers M1 used to prepare the bergenin-focused discrete library L31.

and good purities. The synthesis of L31 by conventional organic synthesis would have required a complex multistep protection–deprotection strategy, and the final products would undoubtedly have been obtained with lower yields.

A larger 600-member bergenin-based library using acylations, oxidations, halogenations, and glycosylations and a 24-member 3,6-dihydroxytropane library have been prepared by the same group (313); a library of acylated taxol derivatives was also reported (314). A survey of theoretical applications for combinatorial biocatalysis has recently appeared (315).

REFERENCES

1.Stahl, S. and Uhlen, M., Trends Biotechnol. 15, 185–192 (1997).

2.Miller, G. P., Zhong, W., Smiley, J. and Benkovic, S. J., in Combinatorial Chemistry: Synthesis and Application, S. R. Wilson and A. W. Czarnik (Eds.). Wiley, New York, 1997, pp. 241–259.

3.Kay, B. K., Kurakin, A. V. and Hyde-DeRuyscher, R.,Drug Discovery Today 3, 370–378 (1998).

4.Rodi, D. J. and Makowski, L., Curr. Opin. Biotechnol. 10, 87–93 (1999).

5.Shusta, E. V., VanAntwerp, J. and Wittrup, K. D., Curr. Opin. Biotechnol. 10, 117–122 (1999).

568BIOSYNTHETIC COMBINATORIAL LIBRARIES

6.Mattheakis, L. C., Bhatt, R. R. and Dower, W. J.,Proc. Natl. Acad. Sci. USA 91, 9022–9026 (1994).

7.He, M. and Taussig, M. J., Nucleic Acids Res. 25, 5132–5134 (1997).

8.Hanes, J. and Pluckthun, A., Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

9.Makeyev, E. V., Kolb, V. A. and Spirin, A. S., FEBS Letters 444, 177–180 (1999).

10.Roberts, R. W. and Szostak, J. W., Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

11.Ohuchi, S., Nakano, H. and Yamane, T., Nucleic Acids Res. 26, 4339–4346 (1998).

12.Tawfik, D. S. and Griffiths, A. D., Nat. Biotechnol. 16, 652–656 (1998).

13.Buchholz, C. J., Peng, K.-W., Morling, F. J., Zhang, J., Cosset, F.-L. and Russell, S. J.,

Nat. Biotechnol. 16, 951–954 (1998).

14.Ernst, W., Grabherr, R., Wegner, D., Borth, N., Grassauer, A. and Katinger, H., Nucleic Acids Res. 26, 1718–1723 (1998).

15.Douglas, J. T., Miller, C. R., Kim, M., Dmitriev, I., Mikheeva, G., Krasnykh, V. and Curiel,

D.T., Nat. Biotechnol. 17, 470–475 (1999).

16.Samuelson, P., Cano, F., Robert, A. and Stahl, S., FEMS Microbiol. Lett. 179, 131–139 (1999).

17.Gunneriusson, E., Samuelson, P., Ringdahl, J., Gronlund, H., Nygren, P.-A. and Stahl, S.,

Appl. Environm. Microbiol. 65, 4134–4140 (1999).

18.Lu, Z. K., Murray, K. S., Van Cleave, V., LaVallie, E. R., Stahl, M. L. and McCoy, J. M., Biotechnology 13, 366–372 (1995).

19.Wentzel, A., Christmann, A., Kratzner, R. and Kolmar, H., J. Biol. Chem. 274, 21037– 21043 (1999).

20.Christmann, A., Walter, K., Wentzel, A., Kratzner, R. and Kolmar, H., Prot. Eng. 12, 797–806 (1999).

21.Daugherty, P. S., Olsen, M. J., Iverson, B. L. and Georgiou, G.,Protein Eng. 11, 825–832 (1998).

22.Dhillon, J. K., Drew, P. D. and Porter, A. J. R., Lett. Appl. Microbiol. 28, 350–354 (1999).

23.Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L. and Curtiss,

R.III, Nat. Biotechnol. 15, 29–34 (1997).

24.Boder, E. T. and Wittrup, K. D., Nat. Biotechnol. 15, 553–557 (1997).

25.Phizicky, E. M. and Fields, S., Microbiol. Rev. 59, 94–123 (1995).

26.Brachmann, R. K. and Boeke, J. D., Curr. Opin. Biotechnol. 8, 561–568 (1997).

27.Cereghino, G. P. L. and Cregg, J. M., Curr. Opin. Biotechnol. 10, 422–427 (1999).

28.Johnson, N. and Varshavsky, A., Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

29.Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J. and Karin, M., Mol. Cell. Biol. 17, 3094–3102 (1997).

30.Broder, Y. C., Katz, S. and Aronheim, A., Curr. Biol. 8, 1121–1128 (1998).

31.Enright, A. J., Iliopoulos, I., Kyrpides, N. C. and Ouzounis, C. A., Nature 402, 86–90 (1999).

32.Smith, G. P., Science 228, 1315–1317 (1985).

33.Parmley, S. F. and Smith, G. P., Gene 73, 305–318 (1988).

34.Ilyichev, A. A., Proc. Acad. Sci. USSR 307, 196–203 (1989).

35.Scott, J. K. and Smith, G. P., Science 249, 386–390 (1990).

REFERENCES 569

36.Devlin, J. J., Panganiban, L. C. and Devlin, P. E., Science 249, 404–406 (1990).

37.Cwirla, S. E., Peters, E. A., Barrett, R. W. and Dower, W. J., Proc. Natl. Acad. Sci. USA 87, 6378–6382 (1990).

38.Ren, Z.-J. and Black, L. W., Gene 215, 439–444 (1998).

39.Rondot, S., Anthony, K. G., Diubel, S., Ida, N., Wiemann, S., Beyreuther, K., Frost, L. S., Little, M. and Breitling, F., J. Mol. Biol. 279, 589–603 (1998).

40.Santini, C., Brennan, D., Mennuni, C., Hoess, R. H., Nicosia, A., Cortese, R. and Luzzago, A., J. Mol. Biol. 282, 125–135 (1998).

41.Gao, C., Mao, S., Lo, C.-H. L., Wirsching, P., Lerner, R. A. and Janda, K. D.,Proc. Natl. Acad. Sci. USA 96, 6025–6030 (1999).

42.Dower, W. J., Miller, J. A. and Ragsdale, C. W.,Nucleic Acids Res. 16, 6127–6145 (1988).

43.Collins, J., Ann. Rep. in Combi. Chem. and Mol. Diversity 1, 210–262 (1997).

44.Smith, G. P. and Petrenko, V. A., Chem. Rev. 97, 391–410 (1997).

45.Levitan, B., J. Mol. Biol. 277, 893–916 (1998).

46.Thompson, J. E. and Williams, A. J., in Molecular Biomethods Handbook , R. Rapley and J. M. Walker (Eds.). Humana, Totowa,. NJ, 1998, pp. 581–594.

47.Zwick, M. B., Shen, J. and Scott, J. K., Curr. Opin. Biotechnol. 9, 427–436 (1998).

48.Cesareni, G., Castagnoli, L. and Cestra, G., Combi. Chem. High Throughput Synth. 2, 1–17 (1999).

49.Yip, Y. L. and Ward, R. L., Comb. Chem. High Throughput Screening 2, 125–138 (1999).

50.Forrer, P., Jung, S. and Pluckthun, A., Curr. Opin. Struct. Biol. 9, 514–520 (1999).

51.Dani, M., in Combinatorial Chemistry and Combinatorial Technologies: Methods and Applications, S. Miertus and G. Fassina (Eds.). Marcel Dekker, Inc., New York, 1999, pp. 275–299.

52.Dani, M., in Combinatorial Chemistry and Combinatorial Technologies: Methods and Applications, S. Miertus and G. Fassina (Eds.). Marcel Dekker, Inc., New York, 1999, pp. 301–322.

53.Kraft, S., Diefenbach, B., Mehta, R., Jonczyk, A., Luckenbach, G. A. and Goodman, S. L., J. Biol. Chem. 274, 1979–1985 (1999).

54.Sato, A., Ida, N., Fukuyama, M., Miwa, K., Kazami, J. and Nakamura, H., Biochemistry 35, 10441–10447 (1996).

55.Szardenings, M., Tornroth, S., Mutulis, F., Muceniece, R., Keinanen, K., Kuusinen, A. and Wikberg, J. E. S., J. Biol. Chem. 272, 27943–27948 (1997).

56.Renschler, M. F., Dower, W. J. and Levy, R., Methods Mol. Biol. 87, 209–234 (1998).

57.Pierce, H. H., Schachat, F., Brandt, P. W., Lombardo, C. R. and Kay, B. K.,J. Biol. Chem. 273, 23448–23453 (1998).

58.Krook, M., Lindbladh, C., Eriksen, J. A. and Mosbach, K., Molecular Diversity 3, 149–159 (1998).

59.Bartoli, F., Nuzzo, M., Urbanelli, L., Bellintani, F., Prezzi, C., Cortese, R. and Monaci, P., Nat. Biotechnol. 16, 1068–1073 (1998).

60.Reineke, U., Sabat, R., Misselwitz, R., Welfle, H., Volk, H.-D. and Schneider-Mergener, J., Nat. Biotechnol. 17, 271–275 (1999).

61.Chirinos-Rojas, C. L., Steward, M. W. and Partidos, C. D., Immunology 96, 109–113 (1999).

570BIOSYNTHETIC COMBINATORIAL LIBRARIES

62.Blank, M., Shoenfeld, Y., Cabilly, S., Heldman, Y., Fridkin, M. and Katchalski-Katzir, E.,

Proc. Natl. Acad. Sci. USA 96, 5164–5168 (1999).

63.Cwirla, S. E., Dower, W. J. and Li, M., Methods Mol. Biol. 128, 131–141 (1999).

64.Houimel, M., Mach, J.-P., Corthesy-Theulaz, I., Corthesy, B. and Fisch, I.,Eur. J. Biochem. 262, 774–780 (1999).

65.McConnell, S. J., Thon, V. J. and Spinella, D. G., Comb. Chem. High Throughput Screening 2, 155–163 (1999).

66.Koivunen, E., Restel, B. H., Rajotte, D., Lahdenranta, J., Hagedorn, M., Arap, W. and Pasqualini, R., Meth. Mol. Biol. 129, 3–17 (1999).

67.Wang, B., Yang, H., Liu, Y.-C., Jelinek, T., Zhang, L., Ruoslahti, E. and Fu, H.,Biochemistry 38, 12499–12504 (1999).

68.Pasqualini, R., Quart. J. Nucl. Med. 43, 159–162 (1999).

69.Coombs, G. S., Bergstrom, R. C., Pellequer, J.-L., Baker, S. I., Navre, M., Smith, M. M., Tainer, J. A., Madison, E. L. and Corey, D. R., Chem. Biol. 5, 475–488 (1998).

70.Lilja, H., Abrahamsson, P. A. and Lundwall, A., J. Biol. Chem. 264, 1894–1900 (1989).

71.Kiczak, L., Koscielska, K., Otlewski, J., Czerwinski, M. and Dadlez, M.,Biol. Chem. 380, 101–105 (1999).

72.Smith, M. M., Shi, L. and Navre, M., J. Biol. Chem. 270, 6440–6449 (1995).

73.Harris, J. L., Peterson, E. P., Hudig, D., Thornberry, N. A. and Craik, C. S.,J. Biol. Chem. 273, 27364–27373 (1998).

74.Gee, S. H.,Sekely, S.A., Lombardo, C., Kurakin, A., Froehner, S. C. and Kay, B. K., J. Biol. Chem. 273, 21980–21987 (1998).

75.Pasqualini, R., Koivunen, E. and Ruoslahti, E., J. Cell. Biol. 130, 1189–1196 (1995).

76.Wrighton, N. C., Farrell, F. X., Chang, R., Kashyap, A. K., Barbone, F. P., Mulcahy, L. S., Johnson, D. L., Barrett, R. W., Jolliffe, L. K. and Dower, W. J.,Science 273, 458–463 (1996).

77.Oligino, L., Lung, F.-D. T., Sastry, L., Bigelow, J., Cao, T., Curran, M., Burke, T. R. B. Jr.; Wang, S., Krag, D., Roller, P. P. and King, C. R., J. Biol. Chem. 272, 29046–29052 (1997).

78.Pierce, H. H., Adey, N. and Kay, B. K., Molecular Diversity 1, 259–265 (1996).

79.Ladner, R. C., Quart. J. Nucl. Med. 43, 119–124 (1999).

80.Rodi, D. J., Janes, R. W., Sanganee, H. J., Holton, R. A., Wallace, B. A. and Makowski, L., J. Mol. Biol. 285, 197–203 (1999).

81.Koide, A., Bailey, C. W., Huang, X. and Koide, S., J. Mol. Biol. 284, 1141–1151 (1998).

82.Leahy, D. J., Hendrickson, W. A., Aukhil, I. and Erickson, H. P., Science 258, 987–991 (1992).

83.Dickinson, C. D., Veerapandian, B., Dai, X. P., Hamlin, R. C., Nguyen, H. X., Ruoslahti, E. and Ely, K. R., J. Mol. Biol. 236, 1079–1092 (1994).

84.Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T. and Winter, G.,Nature 341, 544–546 (1989).

85.McCafferty, J., Griffiths, A. D., Winter, G. and Chiswell, D. J., Nature 348, 552–554 (1990).

86.Barbas, C. F. III, Bain, J. D., Hoekstra, D. M., and Lerner, R. A., Proc. Natl. Acad. Sci. USA 89, 4457–4461 (1992).

REFERENCES 571

87.Davies, J. and Riechmann, L., Biotechnology 13, 475–479 (1995).

88.Arkin, M. R. and Wells, J. A., J. Mol. Biol. 284, 1083–1094 (1998).

89.Mulligan-Kehoe, M. J. and Russo, A., J. Mol. Biol. 289, 41–55 (1999).

90.Lamminmaki, U., Pauperio, S., Westerlund-Karlsson, A., Karvinen, J., Virtanen, P. L., Lovgren, T. and Saviranta, P., J. Mol. Biol. 291, 589–602 (1999).

91.Pessi, A., Bianchi, E., Crameri, A., Venturini, S., Tramontano, A. and Sollazzo, M.,Nature 362, 367–369 (1993).

92.Martin, F., EMBO J. 13, 5303–5309 (1994).

93.McConnell, S. J. and Hoess, R. H., J. Mol. Biol. 250, 460–470 (1995).

94.Ku, J. and Schultz, P. G., Proc. Natl. Acad. Sci. USA 92, 6552–6556 (1995).

95.Nord, K., Nilsson, J., Nilsson, B., Uhlen, M. and Nygren, P.-A., Protein Eng. 8, 601–608 (1995).

96.Rudgers, G. W. and Palzkill, T., J. Biol. Chem. 274, 6963–6971 (1999).

97.Nygren, P.-A. and Uhlen, M., Curr. Opin. Struct. Biol. 7, 463–469 (1997).

98.Hoess, R. H., in Combinatorial Chemistry and Molecular Diversity in Drug Discovery ,

E.M. Gordon and J. F. Kerwin Jr. (Eds.). Wiley, New York, 1998, pp. 389–399.

99.Huse, W. D., Sastry, L., Iverson, S. A., Kang, A. S., Alting-Mees, M., Burton, D. R., Benkovic, S. J. and Lerner, R. A., Science 246, 1275–1281 (1989).

100.Steinberger, P., Kraft, D. and Valenta, R., J. Biol. Chem. 271, 10967–10972 (1996).

101.Andersen, P. S., Stryhn, A., Hansen, B. E., Fugger, L., Engberg, J. and Buus, S., Proc. Natl. Acad. Sci. USA 93, 1820–1824 (1996).

102.Pini, A., Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P. and Neri, D., J. Biol. Chem. 273, 21769–21776 (1998).

103.Osbourn, J. K., Earnshaw, J. C., Johnson, K. S., Parmentier, M., Timmermans, V. and McCafferty, J., Nat. Biotechnol. 16, 778–781 (1998).

104.Rader, C., Cheresh, D. A. and Barbas, C. F. III,Proc. Natl. Acad. Sci. USA 95, 8910–8915 (1998).

105.Huls, G. A., Heijnen, I. A. F. M., Cuomo, M. E., Koningsberger, J. C., Wiegman, L., Boel, E., Van Der Vuurst De Vries, A.-R., Loyson, S. A. J., Helfrich, W., Van Berge Henegouwen,

G.P., Van Meijer, M., De Kruif, J. and Logtenberg, T., Nat. Biotechnol. 17, 276–281 (1999).

106.de Bruin, R., Spelt, K., Mol, J., Koes, R. and Quatrocchio, F.,Nat. Biotechnol. 17, 397–399 (1999).

107.Beste, G., Schmidt, F. S., Stibora, T. and Skerra, A., Proc. Natl. Acad. Sci. USA 96, 1898–1903 (1999).

108.Kirkham, P. M., Neri, D. and Winter, G., J. Mol. Biol. 285, 909–915 (1999).

109.Tang, Y., Beuerlein, G., Pecht, G., Chilton, T., Huse, W. D. and Watkins, J. D., J. Biol. Chem. 274, 27371–27378 (1999).

110.Wu, H., Nie, Y., Huse, W. D. and Watkins, J. D., J. Mol. Biol. 294, 151–162 (1999).

111.Carnemolla, B., Neri, D., Castellani, P., Leprini, A., Neri, G., Pini, A., Winter, G. and Zardi, L., Int. J. Cancer 68, 397–405 (1996).

112.Fan, J., Griffiths, A. D., Lockhart, A., Cross, R. A. and Amos, L. A., J. Mol. Biol. 259, 325–330 (1996).

572BIOSYNTHETIC COMBINATORIAL LIBRARIES

113.Stausbol-Gron, B., Wind, T., Kjaer, S., Kahns, L., Hansen, N. J. V., Kristensen, P., Clark,

B.F. C., FEBS Lett. 391, 71–75 (1996).

114.Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., McCafferty, J., Hodits, R. A., Wilton, J. and Johnson, K. S.,Nat. Biotechnol. 14, 309–314 (1996).

115.Schmaljohn, C., Custer, D., VanderZanden, L., Spik, K., Rossi, C. and Bray, M.,Virology 258, 189–200 (1999).

116.Reiter, Y., Schuck, P., Boyd, L. F. and Plaksin, D., J. Mol. Biol. 290, 685–698 (1999).

117.Qiu, J., Kai, M., Padlan, E. A. and Marcus, D. M., J. Neuroimmunol. 97, 172–181 (1999).

118.Gao, C., Bruemmer, O., Mao, S. and Janda, K. D., J. Am. Chem. Soc. 121, 6517–6518 (1999).

119.Jung, S., Honegger, A. and Pluckthun, A., J. Mol. Biol. 294, 163–180 (1999).

120.Harper, K., Toth, R. L., Mayo, M. A. and Torrance, L.,J. Virol. Meth. 81, 159–168 (1999).

121.Burton, D. R. and Barbas, C. F. III, Adv. Immunol. 57, 191–280 (1994).

122.Hoogenboom, H. R., Trends Biotechnol. 15, 62–70 (1997).

123.Rader, C. and Barbas, C. F. III, Curr. Opin. Biotechnol. 8, 503–508 (1998).

124.Griffiths, A. D. and Duncan, A. R., Curr. Opin. Biotechnol. 9, 102–108 (1998).

125.Bradbury, A., Sblattero, D., Hoogenboom, H. R. and Hufton, S., in Combinatorial Chemistry and Combinatorial Technologies: Methods and Applications , S. Miertus and

G.Fassina (Eds.). Marcel Dekker, Inc., New York, 1999, pp. 323–364.

126.Lerner, R. A., Benkovic, S. J. and Schultz, P. G., Science 252, 659–667 (1991).

127.Fujii, I., Fukuyama, S., Iwabuchi, Y. and Tanimura, R., Nat. Biotechnol. 16, 463–467 (1998).

128.Iwabuchi, Y., Miyashita, H., Tanimura, R., Kinoshita, K., Kikuchi, M. and Fujii, I.,J. Am. Chem. Soc. 116, 771–772 (1994).

129.Baca, M., Scanlan, T. S., Stephenson, R. C. and Wells, J. A., Proc. Natl. Acad. Sci. USA 94, 10063–10068 (1997).

130.Tanaka, F., Almer, H., Lerner, R. A. and Barbas, C. F. III,Tetrahedron Lett. 40, 8063–8066 (1999).

131.Brummer, O., Gao, C., Mao, S., Weiner, D. P. and Janda, K. D.,Lett. Pept. Sci. 6, 295–302 (1999).

132.Gao, C., Lavey, B. J., Lo, C.-H. L., Datta, A., Wentworth, P. Jr. and Janda, K. D., J. Am. Chem. Soc. 120, 2211–2217 (1998).

133.Janda, K. D., Lo, L.-C., Lo, C.-H. L., Sim, M.-M., Wang, R., Wong, C.-H. and Lerner, R. A., Science 275, 945–948 (1997).

134.Gao, C., Lin, C.-H., Lo, C.-H. L., Mao, S., Wirsching, P., Lerner, R. A. and Janda, K. D.,

Proc. Natl. Acad. Sci. USA 94, 11777–11782 (1997).

135.Demartis, S., Huber, A., Viti, F., Lozzi, L., Giovannoni, L., Neri, P., Winter, G. and Neri, D., J. Mol. Biol. 286, 617–633 (1999).

136.Jestin, J.-L., Kristensen, P. and Winter, G., Angew. Chem., Int. Ed. Engl. 38, 1124–1127 (1999).

137.Yamabhai, M., Hoffman, N. G., Hardison, N. L., McPherson, P. S., Castagnoli, L., Cesareni, G. and Kay, B. K., J. Biol. Chem. 273, 31401–31407 (1998).