Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
28
Добавлен:
15.08.2013
Размер:
359.65 Кб
Скачать

TABLE 6. Synthesis of Hydroindanes: One-Pot Cyclization of 2-Bromo-1,6-heptadienes and Subsequent One-Pot Diels-Alder Reaction (see Scheme 7)[22],23]

Entry R5

R6 X

R1

R2

R3

R4

Methoda

One Step

Two Step

 

 

 

 

 

 

 

(Isomer)

(Isomer)

1

H

H

C(CO2Et)2

2

H

H

C(CO2Et)2

3

H

H

C(CO2Et)2

4

H

H

C(CO2Et)2

5

H

H

C(CO2Et)2

6

H

H

C(CO2Et)2

7

H

H

C(CO2Et)2

8

H

H

C(CO2Et)2

9

H

H

C(CO2Et)2

10

H

H

C(CO2Et)2

11

H

H

C(CO2Et)2

12

H

H

C(CO2Et)2

13

H

H

C(CO2Et)2

14

H

H

C(CO2Et)2

15

H

H

C(CO2Et)2

16

H

H

C(CO2Et)2

17

H

H

C(CO2Et)2

18

H

H

C(CO2Et)2

19

H

H

C(CO2Et)2

20

H

H

C(CO2Et)2

21

H

H

C(CO2Et)2

22

H

H

C(CO2Et)2

23

H

Me

C(CO2Et)2

24

Me

H

C(CO2Et)2

CN

H

H

H

A

83

70

COMe

H

H

H

A

81

70

CO2Me

H

H

H

A

93

60

CO2R*b

H

H

H

A

d

55

COX*c

H

H

H

A

d

52

CN

Cl

H

H

A

74

CO2Me

H

CO2Me

H

A

85

CO2Et

H

CO2Et

H

B

88

CO2Et

H

CO2Et

H

A

94

CO2Me

H

H

CO2Me

A

93

CN

CN

CN

CN

A

79

CO2Et

CO2Et

CO2Et

CO2Et

A

78

48

 

CH2-CH2

CO2Me

H

A

83

79

 

CH2-CH2

CO2Me

Cl

A

83

61

H

CH2-CH2-CO

 

H

A

30e

CN

CH2-CH2

 

CN

A

71f

H

C(CH2)2

 

CO2Me

A

48

 

EtO2C-CC-CO2Et

 

 

A

94

 

EtO2C-N=N-CO2Et

 

 

A

78

 

1,4-benzoquinone

 

 

A

43

 

1,4-benzoquinone

 

 

A

71

 

1,4-naphthoquinone

 

 

A

78

CO2Me

H

H

H

A

60 (II)

CO2Me

H

H

H

C

48g (II)

(Continued)

1233

1234

TwoStep

(Isomer)

OneStep

(Isomer)

 

a

 

Method

 

4

 

R

3 R

2 R

1 R

 

X

 

6

 

R

(Continued)

 

6.

5

TABLE

EntryR

– 57 (I) – – – – – – – – – – – – – – – – – – – – –

A 68 (I)

H

H

H

Bu-t 2 CO

d

A

H

H

H

c X* 2 CO

II)+

(I

h 32+

18

C

H

H

H

Me 2 CO

(II)

54

56

63

44

54

62

55

60

46

45

46

48

51

43

41

48

73

41

55

43

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C A A A A A A A A A A A A A A A A A A A

 

 

t-Bu

 

 

 

 

t-Bu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

H H CO H H H H CO H H H H H H H H H H

))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-CH

-CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH (CH

H H H H H H H H H H H H H H H H H H

 

 

H H H H Cl H H H H Cl H H H H H Cl H H H Cl

Me

t-Bu

t-Bu

Me

t-Bu

t-Bu

Me Me Me t-Bu

Me

t-Bu

Me

Me

2

2

2

2

2

2

2

2

2

2

2

2

2

2

CO

CO

CO

CN CN CO

CO

CO

CN CN CO

CO

CO

CO

CN CN CO

CO

CO

CO

2

2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et)

Et)

Et)

Et)

NCHO

NCHO

NCHO

NCHO

NCOMe

NCOMe

NCOMe

NCOMe

NCOMe

NBoc

NBn

NTs

NTs

NTs

NTs

NNs

NNs

NCHO

NCHO

C(CO

C(CO

C(CO

C(CO

2

2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H H H H H H H H H H H H H H H H H H H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

2

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− −

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH-

CH-

2 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

CH-

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH CH

CH(CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H H H H H H H H H H H H H H H H H H H

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

––––

II)+

684344(I

j 41

AAAA

H

)

)

)

2

2

2

-CH

-CH

-CH

2

2

2

(CH

(CH

(CH

H

H

Cl

Cl

Cl

Me

Me

Me

Me

2

2

2

2

CO

CO

CO

CO

NCOMe

NBoc

NTs

NBn

H H H H

H

H

H

Me

48

49

50

51

––

II)+

42(I

k 55

AA

H H

H H

H H

Me

Me

2

2

CO

CO

H O H O

H

Me

52

53

.

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

PPh

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

CO

 

 

 

 

 

 

 

 

II.

II.

K

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

regioisomersIand

regioisomersIand

2

 

 

 

 

 

 

 

 

dmphen.C:Pd(OAc)

myrtenyl.-)R(=R*

camphorsultam.=X*

out.carriedNot

AlClofpresencetheIn

ambientatyield28%kbar,10At pressure.

isomerizedof24%withTogether1,3-diene.

isomerizedof15%withTogetherstartingmaterial.

isomerizedtheof45%withTogether intermediate diene.

Pd(OAc)A:

diastereomersofmixture1:5.8aAs and16:84mixtureof

diastereomersofmixture1:4.2aAs and14:86mixtureof

,

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

CO

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

Ag ,

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

Pd(OAc) B: .

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

PPh

 

 

 

3

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

CO

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

,Ag

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

a

b

c

d

e

f

g

h

i

j

k

1235

1236

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

TABLE 7. Synthesis of Hydroindanes: Cyclization of 2-Bromo-1,6-heptadienes and

 

Subsequent One-Pot Diels–Alder Reaction[23]

 

 

 

Entry

R2

R2

R3

R4

R5

One Step

Two Step

 

 

 

 

 

 

 

 

1

CO2Me

H

H

H

H

87

2

CO2Me

H

H

H

COMe

87

3

CO2H

H

H

H

TBDMS

77

4

CO2t-Bu

H

H

H

TBDMS

73

5

CO2Me

H

H

CO2Me

TBDMS

80

6

CO2Me

H

H

H

THP

77

7

CO2Me

Me

H

H

THP

86

87

8

CO2Me

H

H

H

TBDMS

56

67

(10 kbar). Reaction of the bromodiene with chiral, nonracemic dienophiles such as (R)- myrtenyl acrylate and N-acryloyl camphorsultam according to the two-step procedure gave the correspondingly substituted bicycles with a diastereomeric excess of 82% and >95%, respectively (Table 6, entries 4 and 5). When 0.5 equiv of p-benzoquinone was used with the 2-bromohepta-1,6-diene, a linearly annelated pentacycle was isolated in 71% yield along with a trace of the tricyclic monoadduct (Table 6, entries 20 and 21) while 1,4-naphthoquinone as a dienophile led to a tetracyclic system (Table 6, entry 22). When (E)/(Z )-2-bromo-1,6-octadienes, which correspond to the parent 2-bromohepta- 1,6-diene with a methyl group on the alkene moiety, were treated in the usual manner [Pd(OAc)2, PPh3, Ag2CO3 plus a suitable dienophile], the expected bicycles were isolated only in moderate yields (24 – 35%) because a competing -hydride elimination from the methyl group in the intermediate alkylpalladium halide after 5-exo-trig carbopalladation yields a 1,4-diene rather than the desired 1,3-diene (Scheme 9). In addition, 1,6- heptadienes with a methylenecyclopropane terminator or starter were cyclized under Pd catalysis in the presence of methyl vinyl ketone and methyl acrylate (Scheme 9) and other dienophiles to give spirocyclopropane-annelated bicyclo[4.3.0]nonenes as single regioisomers in good yields (Table 6, entries 25 and 26; Scheme 7). These are the first intramolecular Pd-catalyzed coupling reactions with methylenecyclopropane moieties, which occur without opening of the three-membered ring. When Trost’s protocol for the cycloisomerization of 1,6-enynes was applied to the enyne with a methylenecyclopropane terminator, neither the exocyclic diene nor its cycloadduct—in the presence of methyl acrylate—was observed. The higher homologues of the 1,6-diene with a bromomethylenecyclobutane and a bromomethylenecyclopentane, respectively, instead of a bromomethylenecyclopropane starter, did not cyclize when treated with the Pd(OAc)2/Ag2CO3 system in the presence of a variety of ligands (PPh3, dppe, dppf, 2,9- dimethyl-1,10-phenanthroline) or without added ligands. Surprisingly, when Ag2CO3 was replaced by K2CO3, both compounds as well as the (Z )-substituted and the 1,1-dimethyl- hepta-1,6-dienes, which did not react under the previously favored conditions, cyclized smoothly in a 5-exo-trig mode (Table 6, entries 24, 27 and 28). One equivalent of silver salt in relation to the added amount of palladium catalyst was sufficient to block the Heck reaction. The rationale of these unprecedented experimental results and the role of silver salts in this process are not clear at present. While the methylenecyclopropane derivative as well as the methylenecyclopentane derivative each yielded only one regioisomer, respectively, in the Diels – Alder reaction with methyl acrylate, the corresponding methylenecyclobutane compound gave two isomers in a ratio of about 1:1.7.

 

 

 

 

 

 

 

 

 

 

IV.2.2.1 SYNTHESIS OF CARBOCYCLES 1237

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

E

 

 

 

Pd(OAc)2, Ag2CO3,

E

 

COR3

Br

 

 

PPh3, MeCN,

 

 

 

 

 

E

 

90

°C, 45 min

 

E

 

 

 

 

 

 

R1

R2

 

 

 

 

 

 

 

 

R1 R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

R2

R3

Yield (%)

 

 

 

Me

Me

OMe

24

 

 

 

 

 

 

– (CH2)2

OMe

86

 

 

 

 

 

 

– (CH2)2

Me

86

 

 

 

Scheme 9

B.v. Synthesis of Cyclohexanes: Cyclization of 2-Halo-1,7-octadienes

and Related Compounds

The syntheses of cyclohexane derivatives by 6-exo-cyclizations of 2-halo-1,7-octadienes and 1-halo-1,6-heptadienes are well documented, yet the formation of seven-membered rings during these cyclizations has also been observed (Scheme 10). This type of ring closure to cyclohexane derivatives has been applied in various total syntheses of natural products and been further elaborated applying chiral ligands in the catalysts to enable an enantioselective control (Tables 8 and 9).

X

“Pd”

+

 

 

6-exo

7-endo

 

 

Scheme 10

 

An interesting example concerning the competition between sixand seven-membered ring formation has been provided by Ma and Negishi (Scheme 11).[66] At least when an allenyl group competes with an ethenyl group, seven-membered ring formation occurs with approximately the same rate as six-membered ring closure.

The first reported cascade consisting of an intermolecular Suzuki cross-coupling and a subsequent intramolecular asymmetric Heck reaction involving a 6-exo-trig cyclization[46] has been developed as a key step in an elegant access to halenaquinone, the oxidation product of halenaquinol, a marine natural product with interesting antibiotic, cardiotonic, and protein kinase inhibitory activities (Scheme 12). The two-step process consisting of a Suzuki coupling and a subsequent Heck cyclization has been demonstrated to be similarly efficient.[53]

While the cyclization of 2-halo-1,6-heptadienes under standard Heck conditions leads to the formation of five-membered rings, predominant six-membered ring formation by a formal 6-endo-trig process was observed in an aqueous solvent mixture comprising a catalyst system with a water-soluble sulfonated triphenylphosphine ligand. However, the methylenecyclohexene derivative was obtained in 30% yield only

1238

IV

Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

Pd(PPh)2Cl2,

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K2CO3, Bu4NCl,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMF,

 

 

 

 

 

 

 

 

 

 

 

 

 

120 °C, 23 h

 

 

 

 

 

 

 

 

E

E

E E

+

 

 

 

 

 

 

 

 

 

 

 

 

47% (2:1)

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E = CO2Et

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

E

 

 

 

 

 

Scheme 11

 

 

 

 

 

 

 

 

 

 

 

 

9-BBN

OTBDPS

 

 

 

 

OTBDPS

 

OMe

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTf

Pd(OAc)2, (S)-BINAP, K2CO3,

 

 

 

 

 

 

 

 

 

 

 

 

THF, 60 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTf

78%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87% ee

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

Scheme 12

(Table 10, entry 2). The 6-endo-trig cyclization has been discussed as a result of a sequence of a 5-exo-trig, 3-exo-trig, and retro-3-exo-trig (cyclopropylmethyl to homoallyl rearrangement) cyclizations (Scheme 13 and Table 10). This rearrangement cascade has unquestionably been poven for some examples.[38] Since the process is reversible, it is difficult to state whether the cyclopropyl intermediate has been formed in every single case, see e.g.[24]

A six-membered ring formation has also been observed in the cyclization of 2- bromo-1,7-heptadienes with (1 -methylmethylene)cyclopropyl end groups (Scheme 14). Most probably, the six-membered ring intermediate C is not formed by a 6-endo-trig carbopalladation of the first formed alkenylpalladium bromide, but by a sequence of 5-exo-trig, 3-exo-trig carbopalladation to give B via A, and subsequent cyclopropylmethylto homoallylpalladium bromide rearrangement. Intermediate C would then undergo the same rearrangement once more, and the resulting D finally would undergo-hydride elimination to furnish a cross-conjugated triene, a so-called dendralene. The same products are also obtained by a Pd-catalyzed cycloisomerization of a terminal acetylene with a (1 -methylmethylene)cyclopropyl group at the other end. The same eneynes, when treated with iodobenzene under Heck conditions, yield phenyl-substi- tuted dendralenes in addition to the cross-coupling product of iodobenzene and the eneyne (Scheme 14).[80]

The cyclization of o-butenylbenzyl halides proceeds by a 6-exo-trig carbopalladation to yield 2-methylenetetraline (Scheme 15).[16]

IV.2.2.1 SYNTHESIS OF CARBOCYCLES 1239

TABLE 8. Synthesis of Cyclohexanes: Cyclization of 2-Halo-1,7-octadienes, 1-Halo-1,6- heptadienes, and Related Compounds by a 6-exo Process

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst, Solvent,

Yield

 

Entry

Starting Material

 

Product

 

 

 

 

Temperature

(%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(OAc2), PPh3,

67

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[32],[33]

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

(2:1)a

 

 

 

 

 

 

 

 

 

 

 

 

 

MeCN, 80 °C, 23 h

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

Pd(OAc2), PPh3,

86

[32]

2

 

 

 

 

 

 

E

 

 

 

 

K2CO3, MeCN,

(4:1)a

(cf. [34])

 

E

 

 

 

 

 

E

E = CO2Et

80 °C, 4 h

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C6H13

 

 

 

C6H13

Pd(PPh3)4, Et3N,

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeCN/THF, reflux,

(9:1)a

[27]

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

2 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(PPh3)4, NaOAc,

97

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[27]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeCN/THF, reflux,

(GLC)b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 h

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(PPh3)4, Et3N,

70

[27]

 

 

 

 

 

 

 

 

Bu

 

 

 

 

 

 

 

 

MeCN/THF,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7:3)a

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

Bu

reflux, 1 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

E

 

 

 

 

Pd(PPh3)4, Et3N,

91

[26]

 

 

 

 

 

I

Bu

 

 

 

 

 

 

Bu

MeCN, reflux, 1.5 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

E = CO2Et

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E= CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTf

 

 

 

 

 

 

 

 

Pd(OAc2), PPh3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et3N, MeCN, 70 °C,

80

[9]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

PdCl2, sulfonated

 

 

7

E

I

 

E

 

 

 

 

triphenylphosphine,

80c

[37]

E

 

 

 

 

H

(i-Pr)2NEt,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeCN/H2O 6 : 1, 70 °C, 12 h

E = CO2Me

 

 

 

Pd(OAc)2, (R)-

 

 

 

BINAP, t-BuOH,

 

 

 

OTf

 

H

K2CO3,

8

PivO

ClCH2CH2Cl, 60 °C,

PivO

 

 

42 h

76

(86% [52] ee)

OH

(Continued)

1240

IV

Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

TABLE 8. (Continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst, Solvent,

Yield

 

Entry

Starting Material

Product

 

Temperature

(%)

Reference

 

 

 

PMBO

 

PMBO

 

 

 

 

 

 

 

O

 

Pd2(dba)3, dppb,

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

KOAc, DMA,

65–70

[47]

 

 

 

 

 

TfO

 

 

75 °C

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

TfO

 

O

 

O

Pd(OAc)2, PPh3,

95

 

10

 

 

 

 

 

Et3N, MeCN, 70 °C,

(3:1)a

[51]

 

 

 

 

 

 

30 h

 

 

 

 

 

OBn

 

 

 

 

OBn

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

Br

 

 

 

 

Pd(OAc)2, P(o-Tol)3,

90

 

11

 

 

 

NCbz

 

 

 

 

NCbz

[50]

 

 

 

 

E

 

 

 

H

Et3N, MeCN,

(7:1)a

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

110 °C, 26 h

 

 

 

 

 

 

 

N

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

H

 

 

 

 

 

E = CO2Me

O

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

E

E

N(Me)Boc

PdCl2, dppp,

77

[49]

12

 

 

 

 

 

 

 

 

 

Ag3PO4, CaCO3,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMF, 100 °C, 5 h

 

 

 

 

N(Me)Boc

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ts

E = CO2Me

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ts

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aMixture of double bond positional isomers.

bPurity according to gas chromatography.

cEquimolar mixture of cis- and trans-fused products.

–HPdX

“Pd”

PdX

 

3-exo

 

5-exo

PdX

 

 

 

 

 

 

 

X

 

 

 

 

“Pd”

 

 

 

 

6-endo

 

–HPdX

 

 

 

 

 

 

 

 

 

PdX

Scheme 13

 

 

 

IV.2.2.1

SYNTHESIS OF CARBOCYCLES

1241

TABLE 9. Synthesis of Tetralines: Cyclization of 1-Halo-2-pentenylarenes and Related

 

Compounds

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst, Solvent,

Yield

Ref-

Entry Starting Material

Product

Temperature

(%)

erence

 

 

 

 

 

 

 

 

E

 

E

 

 

 

1

E

 

E

Pd(PPh3)4, Et3N,

82

[26]

 

 

 

MeCN, 50–100 °C

 

 

 

 

 

 

I

2

3

4

5

6

E = CO2Et

 

E

E

 

E= CO2Me

 

 

 

 

 

 

 

 

 

 

 

E

O

Pd(OAc)2, PPh3,

 

 

E

 

 

 

 

 

 

Et3N, MeCN,

 

 

 

 

E

 

 

 

Br

 

 

E

 

 

80 °C, 48 h

 

 

 

 

 

 

E = CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

DBS-N

 

 

 

 

 

 

 

OBn

 

 

Pd(OTfa)2(PPh3)2,

 

 

I

 

OBn

PMP, toluene,

 

 

 

120 °C, 42 h

 

 

 

 

 

 

 

 

DBS-N

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(OAc)2, (R)-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTf

 

 

 

 

 

 

BINAP, K2CO3,

 

 

 

 

 

 

 

 

toluene, 80 °C,

 

 

 

 

 

 

 

 

72 h

OR

Pd(OAc)2

TfO (R)-BINAP,

K2CO3, THF,

50 °C, 50h

 

 

 

 

R = SiMe2t-Bu

RO

 

 

 

 

 

 

 

 

 

MeO

 

 

OR

 

 

 

 

 

 

 

 

 

OMe

 

 

Pd(OAc)2, (S)-

 

 

 

 

 

BINAP, K2CO3,

 

 

 

OMe

 

 

 

 

 

 

 

 

THF, 60 °C, 22 h

TfO

OMe

R = SiPh2t-Bu

RO

62 [24]

60 [76]

71a [77]

(95% ee)b

85 [84]

(87%) ee

78 [46],[79],

(87% ee) [85]

(Continued)

1242

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

TABLE 9. (Continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst, Solvent,

Yield

 

Entry

Starting Material

Product

Temperature

(%)

Reference

 

 

 

 

 

 

 

 

 

 

BnO

Pd(dppb), KOAc,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TfO

 

 

 

 

 

 

 

 

 

DMA, 120 °C,

65

[47]

7

 

 

 

 

 

 

 

30 h

 

 

 

 

OR

OR

OBn

R = SiMe2t-Bu

 

 

 

 

I

 

O

 

 

 

 

 

 

 

 

 

 

 

O O

Pd(OAc)2, PPh3,

 

 

 

O

 

 

8

 

 

 

 

 

 

 

Ag2CO3,

 

 

 

 

 

 

 

 

t-BuOMe, reflux,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 h

 

Br

HO

E

 

N(Me)Boc

OH

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PdCl2, dppp,

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

Ag3PO4, CaCO3,

 

 

N(Me)Boc

 

 

 

 

 

DMF, 100 °C, 5 h

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ts

E = CO2Me

 

 

 

N

 

 

 

 

 

 

 

 

Ts

 

67 [48]

77 [49]

aMixture of double bond positional isomers.

bDetermined by HPLC analysis of an oxidation product.

TABLE 10. Synthesis of Cyclohexanes: Cyclization of 2-Halo-1,6-heptadienes by a Formal 6-endo-trig Process

 

 

 

 

 

Catalyst, Solvent,

Yield

 

Entry

Starting Material

Product

Temperature

(%)

Reference

 

 

 

 

 

 

 

 

1

 

 

 

 

PdCl2, Et2NH, Et3N,

69

[38]

 

 

 

 

 

 

 

 

DMF, 80 °C, 8 h

 

 

 

 

 

 

 

 

I

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

PdCl2, sulfonated

 

 

 

E

E

triphenylphosphine,

 

 

2

 

 

 

(i-Pr)2NEt, Ag2CO3,

30

[37]

Br

E

 

E

 

 

 

MeCN/H2O 6:1,

 

 

 

 

 

 

 

90 °C, 24 h

 

 

E = CO2Me

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis