III.2.11.1 Pd-CATALYZED CROSS-COUPLING INVOLVING ALKYLMETALS |
607 |
in Table 5. The following noteworthy features are seen in Table 4. Fluorine atoms can be present in essentially any positions including and .[44],[45] -Zinco- -amino acid derivatives are noteworthy examples of zinc homoenolates.[46]–[50] Some relatively electronegative metals, such as Si and B, can be present in various positions including,[51]–[54] ,[55] and .[6] The superior intrinsic reactivity of Zn relative to Si and B is evident from these examples. In Table 5, some representative examples of the use of heterosubstituted organic electrophiles are shown. Less reactive halogens, that is, F, Cl, and even Br in some cases, can be accommodated in alkenyl[56] and aryl halides.[57] It is noteworthy that Pd-catalyzed alkylation can be achieved even with alkenyl chlorides[58] and that one of the two or more Cl atoms in a molecule can selectively be utilized in the reaction (Scheme 5). Although proximal heterofunctional groups can interfere with Pdcatalyzed cross-coupling through chelation, various oxyfunctional groups in organic electrophiles can be tolerated. The use of (Z )-3-iodo-2-buten-1-ol protected as the chlorozinc or bromozinc derivatives is noteworthy, as it provides an efficient and selective route to many (Z )-terpenoids (Sect. III.2.11.2). Also noteworthy is that alkenyl sulfides[63] can be tolerated, whereas alkenyl sulfones[64] undergo hydrogenolysis involving the S group. Boryl groups (e.g., BR3) can also be tolerated,[65] indicating that the BR2 groups in either the starting compound or the product are far less reactive than the alkylzinc reagent under the conditions used.
R1 |
|
|
|
|
|
|
R1 |
|
|
|
|
+ |
R3MgCl |
|
Pd or Ni cat. |
|
|
||
R2 |
|
|
|
R2 |
|
R3 |
|||
|
Cl |
|
|
[58] |
|
|
|||
R1 |
|
R2 |
R3 |
|
Catalyst |
Yield % |
|||
|
|
|
|
|
|
||||
Et |
|
H |
n-Oct |
Pd(PPh3)4 |
70 |
||||
H |
|
Et |
n-Oct |
Pd(PPh3)4 |
65 |
||||
n-Oct |
|
H |
Et |
Ni(PPh3)4 |
82 |
||||
Scheme 5
Pd-catalyzed alkylation with alkylzincs and alkylmagnesiums has been applied to the synthesis of natural products and related compounds of biochemical interest, as exemplified in Scheme 6.
D. Pd-CATALYZED ALKYLATION WITH ALKYLBORONS
D.i. Background
Despite the low intrinsic reactivity of alkylboranes, Pd-catalyzed alkylation with alkylboron compounds holds considerable promise as a unique and chemoselective alkylation method. It is unique in part because hydroboration of alkenes is by far the most general and dependable method for stoichiometrically converting alkenes into organometals and in part because alkylboron compounds thus generated can satisfactorily participate in Pd-catalyzed alkylation under basic conditions. In this connection, it should be noted that the current scopes of hydroalumination and hydrozirconation of alkenes are much more limited than
608 |
III |
Pd-CATALYZED CROSS-COUPLING |
|
|
|
|
TABLE 4. Pd-Catalyzed Alkylation with Hetero-Substituted Alkylzincs and |
|
|
||||
Alkylmagnesiums |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
R′X |
|
|
Yield |
Ref- |
RM |
|
Catalyst |
Solvent |
(%) |
erence |
|
|
|
|
|
|
|
|
CF3ZnI |
|
(E )-PhCH=CHBr |
Pd(PPh3)4 |
THF |
65 |
[44],[45] |
n-C3F7ZnI |
PhI |
Cl2Pd(PPh3)2 |
THF |
78 |
[44],[45] |
|
i-C3F7ZnI |
4-MeC6H4I |
Cl2Pd(PPh3)2 |
THF |
81 |
[44],[45] |
|
CF3ZnI |
|
(E )-PhCH=CHCH2Br |
Pd(OAc)2 |
THF |
51 |
[45] |
|
|
NHBoc |
|
|
|
|
IZn |
|
PhI |
Cl2Pd[P(o-Tol)3]2 |
THF |
55 |
[46] |
|
CO2Bn (1) |
|
|
|
|
|
(1) |
|
|
1-Napth-I |
|
|
||
(1) |
|
|
4-NO2C6H4I |
|
|
||
(1) |
|
|
2-MeOC6H4I |
|
|
||
(1) |
|
|
PhCOCl |
|
|
||
(1) |
|
|
2-Furoyl-Cl |
|
|
||
(1) |
|
|
4-(MeO)2P(O)CH2C6H4I |
||||
|
|
|
|
I |
|
|
|
|
|
NHBoc |
|
|
|
|
|
IZn |
|
|
|
|
|
||
CO2Me |
|
N |
|
|
|||
|
|
|
|||||
|
|
|
|
|
|
||
|
|
NHBoc |
|
|
|
|
|
|
|
|
|
|
|
|
|
IZn |
(EtO)2P(O)O |
|
I |
||||
|
|
|
|
|
|
N |
|
CO2Bn |
|
|
|
||||
|
|
|
|
|
|||
BrMg(CH2)8OTHP |
(Z)-n-BuCH=CHI |
|
|
||||
(E)-PhCH=CHBr
MgBr
Me
Cl2Pd[P(o-Tol)3]2 |
THF |
64 |
[46] |
Cl2Pd[P(o-Tol)3]2 |
THF |
61 |
[46] |
Cl2Pd[P(o-Tol)3]2 |
THF |
40 |
[46] |
Cl2Pd(PPh3)2 |
THF |
70 |
[47] |
Cl2Pd(PPh3)2 |
THF |
90 |
[47] |
Cl2Pd[P(o-Tol)3]2 |
THF |
36 |
[48] |
Cl2Pd[P(o-Tol)3]2 |
THF |
12 |
[49] |
Cl2Pd(PPh3)2 |
DMAC |
86 |
[50] |
Pd(PPh3)4 |
THF |
65 |
[50] |
Pd(PPh3)4 |
THF |
78 |
[50] |
Me3SiCH2ZnCl |
I |
Pd(PPh3)4 |
Et2O-THF |
80 |
[51] |
|
n-Hex |
|
|
|
|
Me3SiCH2MgCl |
(Z)-n-PrCH=CHI |
Pd(PPh3)4 |
Et2O-THF |
70 |
[51] |
|
I |
|
|
|
|
|
F |
|
|
|
|
Me3SiCH2ZnBr |
F |
Pd(PPh3)4 |
THF |
85 |
[52] |
|
SiEt3 |
|
|
|
|
Me3SiCH2MgCl |
I |
Pd(PPh3)4 |
THF |
97 |
[53] |
|
|||||
O |
(E)-PhCH=CHI |
|
|
|
|
IZnCH2B |
Cl2Pd(PPh3)2 |
THF |
62 |
[54] |
|
O |
|
|
|
|
|
ZnBr |
Et |
|
|
|
|
|
Pd(PPh3)4 |
THF |
73 |
[55] |
|
|
I |
||||
|
|
|
|
|

SiMe3
Yield (%) Reference
Solvent
Electrophiles |
Catalyst |
Hetero-SubstitutedOrganic |
R′X |
Pd-CatalyzedAlkylationwith |
|
TABLE5. |
RM |
[56]
65
benzene-O
2 Et
4 ) 3 Pd(PPh
a Cl
Cl
Cl
n-OctMgCl
[56] |
[57] |
[57] |
[57] |
81 |
93 |
79 |
80 |
O-benzene |
THF |
THF |
THF |
Et |
|||
2 |
|
|
|
|
) |
) |
) |
3 |
Pd(dppf |
Pd(dppf |
Pd(dppf |
4 |
|
|
|
) |
|
|
|
Pd(PPh |
Cl |
Cl |
Cl |
|
2 |
2 |
2 |
|
a |
|
|
|
||
|
Cl |
|
|
Cl |
Cl |
Cl |
|
|
|||||
|
|
|||||
|
|
|
|
4 |
4 |
4 |
|
|
|
|
H |
H |
H |
Cl |
|
|
|
6 |
6 |
6 |
|
Cl |
3-ClC |
2-ClC |
4-ClC |
||
MgCl
MeMgCl |
PhMgCl |
n-PrMgCl |
[59]
70
benzene-O
2 Et
4 ) 3 Pd(PPh
OTHP 8 ) 2 =CH(CH
Z( ICH-)
n-BuMgCl
[60]
80
benzene
4 ) 3 Pd(PPh
|
OTHP |
|
4 |
I |
) |
2 |
|
Me |
(CH |
|
4 |
|
C) |
|
2 |
|
THPO(H |
MeMgI
[61] |
(Continued) |
98 |
|
DMF
BuLi-
2 ) 3 Pd(PPh 2 Cl
3 OCPh
I
Me
n-BuZnCl
609
Solvent Yield (%) Reference
Catalyst
R′X
(Continued) |
|
TABLE5. |
RM |
[61]
90
DMF
4 ) 3 Pd(PPh
t-Bu 2 OSiMe
I
Me
n-BuZnCl
[61]
80
DMF
BuLi-
2 ) 3 Pd(PPh 2 Cl
OZnCl
I
Me
n-HexZnCl
[62] |
[62] |
[63] |
65 |
78 |
75 |
DMF |
DMF |
O-THF |
Et |
||
|
|
2 |
2 |
2 |
Pd(PPh |
Pd(MeCN) |
Pd(MeCN) |
|
|
|
2 |
|
|
) |
|
|
3 |
2 |
2 |
2 |
Cl |
Cl |
Cl |
H |
H |
CHSPh |
2 |
2 |
|
CO |
CO |
|
2 |
2 |
|
C(I)CH |
C(I)CH |
|
2 |
2 |
BrCH= |
= |
= |
(Z)- |
CH |
CH |
ZnCl |
|
MgCl |
2 |
|
|
2 |
|
|
) |
|
|
CH(CH |
|
2 |
|
|
6 |
|
PrZnBr-i |
) |
Me |
THPO(CH |
|
C = |
|
|
2 |
|
|
[64]
67
THF
2 Pd(acac)
19
H 9 C
S 2 PhO
i-PrMgCl
[64]
83
THF
3 2PBu-
2 Pd(acac)
19
H 9 C
S 2 PhO
n-BuMgCl
[65] |
[65] |
65 |
59 |
THF |
THF |
2 |
2 |
) |
) |
3 |
3 |
Pd(PPh |
Pd(PPh |
2 |
2 |
Cl |
Cl |
2 |
2 |
|||
|
|
BBr |
|
BBr |
a |
a |
|||
Br |
|
n-Hex |
Br |
n-Hex |
|
|
|||
|
|
|
||
|
ZnCl |
BuZnCl-n |
2 |
Me |
|
|
SiCH |
|
3 |
underlinedThe reactsatom thewith reagent.organozinc
a
610
|
|
|
|
|
|
|
|
|
|
III.2.11.1 Pd-CATALYZED CROSS-COUPLING INVOLVING ALKYLMETALS |
611 |
||||||||||||||||||||||||||||||||||
R1 |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
R1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R |
ZnX, Pd(PPh3)4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
I |
|
|
|
|
|
OTBS |
|
|
[66] |
|
|
|
R2 |
OTBS |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R1 |
|
R2 |
Yield (%) |
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Me |
|
n-Bu |
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n-Bu |
|
Me |
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
ZnBr + |
Br |
|
|
|
|
|
|
OBn |
|
|
Cl2Pd(dppf) |
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[67] |
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
steps |
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OBn |
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cl− |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
66% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Me |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N + N |
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ageline A |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H2N |
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Si |
MgCl + |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pd(PPh3)4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Si |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[68] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Pd(PPh3)4 |
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
+ IZn |
|
|
|
|
|
|
2. NaOAc |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
I |
|
|
|
|
|
Cl |
[69] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42% |
OAc |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yellow scale pheromone |
|
|||||
|
|
|
|
|
|
|
|
|
|
Ph |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ph |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Br |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bu-n |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
N |
|
|
N |
|
|
|
|
|
n-BuZnCl |
|
|
|
|
|
|
|
|
|
|
|
N |
N |
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cl2Pd(dppf) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
Ph |
|
|
|
|
|
|
|
Zn |
|
|
Ph |
|
|
|
Ph |
|
|
|
|
|
Zn |
|
|
|
|
Ph |
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
N |
|
|
N |
|
|
[70],[71] |
|
|
|
|
|
|
|
|
|
|
|
N |
N |
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93% |
|
|||||||
|
|
|
|
|
|
|
|
|
|
Ph |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ph |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
N |
|
|
|
|
|
|
|
N |
|
|
|
Pd(PPh3)4 |
|
|
N |
|
|
|
N |
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
+ |
|
RZnBr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
N |
N |
|
|
[72] |
|
|
|
|
N |
|
|
|
N |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
Ph |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ph |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R |
|
|
Yield (%) |
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n-Bu |
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Me |
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n-C10H21 |
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
Scheme 6
612 |
III Pd-CATALYZED CROSS-COUPLING |
that of hydroboration. Moreover, no generally satisfactory conditions for Pd-catalyzed alkylation of alkylaluminums and alkylzirconiums have as yet been developed. In cases where alkylboranes must be prepared by methods other than hydroboration, selection of B over Zn or Mg must be made through careful comparison of these metals in various respects.
D.ii. Scope
Alkylboranes themselves are rather inert under the more usual conditions of Pdcatalyzed cross-coupling. In the presence of suitable bases, such as NaOH and NaOMe, however, trialkylboranes can undergo relatively facile alkylation in the presence of Pd catalysts.[73],[74] Only one of the three alkyl groups in a trialkylborane is usually utilized. 10-Alkyl-9-oxa-10-borabicyclo[3.3.2]decanes, which are examples of dialkylborinates, can readily and selectively transfer the 10-alkyl groups.[75],[76] Selective utilization of one of the three alkyl groups of a trialkylborane is most conveniently performed through the use of B-alkyl-9-borabicyclo[3.3.1]nonanes (B-alkyl-9-BBN’s), B-alkyldisiamylboranes, and B-alkyldicyclohexylboranes.[73],[74] In contrast with arylation and alkenylation, Pd-catalyzed alkylation with alkylboronates, such as B-alkylcat- echolboranes and alkylboronic acids, has not been very effective.[74] In addition to organic iodides and bromides, organic triflates can serve as satisfactory electrophiles.[77],[78] Alkylboranes containing methyl, n-alkyl, and isoalkyl groups including Me3SiCH2,[76] homoallyl,[74] and various heterofunctional alkyl groups have successfully been employed. Although some examples of the use of secondary alkylboranes are known,[74] their reaction tends to be sluggish and low-yielding, and isomerization of secondary alkyl groups to primary alkyl groups is a serious concern. Indeed, tertiary alkyl groups, such as t-Bu, completely isomerize to isoalkyl groups.[79]
Some representative examples of Pd-catalyzed alkylation with alkylboranes are shown in Table 6, and its notable applications are shown in Scheme 7.
E. SUMMARY
Pd-Catalyzed alkylation of alkenyl and aryl electrophiles with alkylzincs is a generally satisfactory and chemoselective method of alkylation. Together with the corresponding reaction of Grignard reagents, this reaction should be considered first. In cases where the required alkylmetals are readily accessible via hydroboration of suitable alkenes, B may become the metal of choice. However, the required boron reagents are generally more expensive than the alkylzinc reagents. Furthermore, they are intrinsically less reactive than organozincs, requiring more specialized and/or less desirable reagents, such as Ph3As, as well as generally more rigorous conditions. In selecting the most satisfactory protocol for a given synthetic task, it is advisable to take all of these factors into consideration. Although the alkyltin reaction displays advantages over Zn, Mg, and B in a limited number of cases, Sn appears to be generally less favorable than Zn, Mg, and B in Pd-catalyzed alkylation. At present, other metals, such as Al, Si, Cu, and Zr, do not appear to be very useful in Pd-catalyzed alkylation.
TABLE 6. Pd-Catalyzed Alkylation with Alkylborons in the Presence of Cl2Pd(dppf)
|
|
|
|
Ref- |
|
Alkylmetal |
Organic Electrophile |
Base |
Yield(%) |
erence |
|
|
|
|
|
|
|
B-Me-9-BBN |
(Z)-BrCH=CH(Hex-n) |
NaOHa |
100 (99% Z) |
[75] |
|
B-(i-Bu)-9-BBN |
PhI |
NaOMe |
95 |
[73] |
|
B-(s-Bu)-9-BBN |
PhI |
NaOMe |
0 |
[73] |
|
(s-Bu)3B |
PhI |
KOH |
40 |
[74] |
|
B-Me3SiCH2-9-BBN |
(Z)-BrCH=CH(Bu-n) |
NaOHa |
87 (98% Z) |
[76] |
|
(Cy)3B |
PhI |
KOH |
55 |
[74] |
|
O |
PhI |
NaOMe |
1 |
[75] |
|
OctB |
|||||
|
|
|
|
O
B-Oct-9-BBN |
PhI |
|
|
B-Oct-9-BBN |
2-MeOC6H4I |
||
B-Oct-9-BBN |
4-MeO2CC6H4I |
||
B-Oct-9-BBN |
4-NO2C6H4OTf |
||
B-Oct-9-BBN |
BrCH=CMe2 |
||
B-Oct-9-BBN |
(Z )-Br(Me)CH=CHMe |
||
B-Oct-9-BBN |
(Z )-BrCH=CHPh |
||
OctB(Sia)2 |
PhI |
|
|
OctB(Cy)2 |
PhI |
|
|
(Oct)3B |
PhI |
|
|
|
Br |
|
SO2Ph |
MOMO |
B |
|
SPh |
|
|||
|
B |
|
|
|
|
||
|
Br |
|
|
n-Hex |
B |
SPh |
|
|
|
||
OMOM |
Br |
|
|
|
|
|
|
|
|
|
Me |
NC(CH2)10B |
Br |
|
CO2Me |
|
|
|
|
MeO2C(CH2)10B |
Br |
|
|
MeO2C(CH2)10B |
TfO |
|
Bu-t |
NaOMe 98 NaOH 90 NaOMe 82b K3PO4 48c
NaOH 94 NaOH 98 NaOH 90 NaOH 82 NaOH 93 NaOMe 96
K2CO3 84
NaOH 78
NaOH 64
K2CO3 80
K3PO4 92
K3PO4 86
[73]
[73]
[73]
[77],[78]
[73]
[73]
[73]
[74]
[74]
[74]
[80]
[81]
[81]
[74]
[74]
[77],[78]
aPd(PPh3)4 was used as a catalyst.
bAfter the cross-coupling reaction, the mixture was treated with acetic anhydride to prevent ester hydrolysis.
cIn addition, the corresponding aniline was produced in 30% yield.
613
614 III |
Pd-CATALYZED CROSS-COUPLING |
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
t-Bu |
|
B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
Pd(PPh3)4 |
|
|
|
|
|
steps |
|
|
|
|
|||||
Br |
|
|
|
|
OH |
|
NaOH |
|
|
|
|
OH |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
[79] |
|
|
|
|
|
|
|
|
|
|
|
|
|
CO2H |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ibuprofen |
|||
|
|
O |
|
|
|
PdCl2(dppf) O |
|
|
|
|
||||||||||||
|
|
|
|
|
I |
|
|
|
Ph3As |
|
|
(CH2)6CO2Me |
||||||||||
|
|
|
|
|
|
|
|
Cs2CO3 |
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
+ MeO2C(CH2)6 |
|
B |
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
[82] |
|
|
|
|
|
|
70−80% |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TBDMSO |
|
|
|
|
TBDMSO |
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
steps |
|
|
|
|
|
|
CO2H |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HO |
|
|
|
|
OH |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
|
B |
||
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
||
|
|
|
|
|
[74] |
|
|
||
|
|
|
Br |
|
|
|
|
|
|
|
|
|
|
|
OTHP |
||||
|
|
|
Cl2Pd(dppf) |
|
|
|
|
|
|
|
|
|
K3PO4 |
|
|
|
|
|
|
|
• |
+ MeO2C(CH2)10 |
|
B |
|||||
|
|
||||||||
|
|||||||||
|
|
OCO2Me |
|
|
|
|
|
||
|
|
O |
|
|
|
|
|
||
O |
|
B |
|
|
|
|
|
||
|
O |
|
Cl2Pd(dppf) |
||
O |
|
|
|||
|
|
DMF, K3PO4 |
|||
|
O |
|
|||
|
|
|
|
|
|
|
|
O |
[84] |
|
|
|
|
|
|
|
|
O OTBS
Br
NHZ
Scheme 7
PGE1
B
67%
OTHP
Pd(PPh3)4
60%
[83]
(CH2)10CO2Me
O
O OTBS
O
O
NHZ
O
O
O
III.2.11.1 |
Pd-CATALYZED CROSS-COUPLING INVOLVING ALKYLMETALS 615 |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
MeO2C |
|
Me |
||
|
|
H |
|
|
|
B |
|
|
|||||||||
|
|
|
|
|
|
H |
|
|
|||||||||
|
|
|
|
|
|
|
|||||||||||
S |
Me |
|
|
|
|
Me |
|
Br |
|||||||||
|
|
|
|
|
|
|
S |
|
|||||||||
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
Cl2Pd(dppf) |
||||
S |
|
|
|
|
9-BBN |
|
S |
|
|
|
|
K2CO3 |
|
|
|||
|
|
[85],[86] |
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
OAc |
Me |
|
|
|
OAc Me |
|
|
|||||||||
|
|
MeO2C Me |
|
|
|
|
MeO2C Me |
|
|
||||||||
|
|
|
|
|
|
|
|
H |
|
|
|
|
|
|
|
H |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
S |
Me |
|
|
|
|
|
|
|
|
Me |
|||||
|
|
|
|
|
steps |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
S |
|
|
|
|
|
|
|
|
HO2C |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
77% |
|
|
OAc |
Me |
|
|
|
|
|
OH |
Me |
||||
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
||||||||
dihydroxyserrulatic acid
1.9-BBN
2.Cl2Pd(dppf)
|
|
OTBS |
NaOH |
|
OTBS |
||
|
|
|
|
|
|
|
|
I |
[87] |
|
|
|
|
||
|
|
|
|
|
|||
|
|
|
1. 9-BBN |
|
|
||
|
|
|
2. |
|
|
|
|
|
|
|
Br |
|
|
||
|
|
|
CO2Me |
|
|
||
|
|
|
Cl2Pd(dppf) |
|
CO2Me |
||
|
|
|
K3PO4 |
|
|||
|
|
|
|
|
|||
|
|
|
[74] |
|
|
|
|
AcO |
|
|
|
|
|
||
|
|
|
AcO |
75% |
|||
|
|
|
|
|
|||
|
|
|
Scheme 7 (Continued ) |
|
|
||
REFERENCES
[1]M. Yamamura, I. Moritani, and S. I. Murahashi, J. Organomet. Chem., 1975, 91, C39.
[2]H. P. Dang and G. Linstrumelle, Tetrahedron Lett., 1978, 191.
[3]S. I. Murahashi, M. Yamamura, K. Yanagisawa, N. Mita, and K. Kondo, J. Org. Chem., 1979, 44, 2408.
[4]T. Hayashi, M. Konishi, and M. Kumada, Tetrahedron Lett., 1979, 1871.
[5]T. Hayashi, M. Konishi, K. Yokota, and M. Kumada, Chem. Lett., 1980, 767.
616III Pd-CATALYZED CROSS-COUPLING
[6]E. Negishi, L. F. Valente, and M. Kobayashi, J. Am. Chem. Soc., 1980, 102, 3298.
[7]K. Takai, K. Oshima, and H. Nozaki, Tetrahedron Lett., 1980, 21, 2531.
[8]M. Sato, K. Takai, K. Oshima, and H. Nozaki, Tetrahedron Lett., 1981, 22, 1609.
[9]M. G. Saulnier, J. F. Kadow, M. M. Tun, D. R. Langley, and D. M. Vyas, J. Am. Chem. Soc., 1989, 111, 8320.
[10]K. Hirota, Y. Isobe, and Y. Maki, J. Chem. Soc. Perkin Trans. 1, 1989, 2513.
[11]K. Asao, H. Iio, and T. Tokoroyama, Synthesis, 1990, 382.
[12]K. Hirota, Y. Kitade, Y. Kanbe, and Y. Maki, J. Org. Chem., 1992, 57, 5268.
[13]K. Hirota, Y. Kitade, Y. Kanbe, Y. Isobe, and Y. Maki, Synthesis, 1993, 213.
[14]F. Bracher and T. Papke, Monatsh. Chem., 1995, 126, 805.
[15]D. Milstein, and J. K. Stille, J. Am. Chem. Soc., 1979, 101, 4992.
[16]K. Kikukawa, K. Kono, G. Wada, and T. Matsuda, J. Org. Chem., 1983, 48, 1333.
[17]W. J. Scott, G. T. Crisp, and J. K. Stille, J. Am. Chem. Soc., 1984, 106, 4630.
[18]W. J. Scott and J. K. Stille, J. Am. Chem. Soc., 1986, 108, 3033.
[19]S. J. F. Macdonald, T. C. McKenzie, and W. D. Hassen, J. Chem. Soc. Chem. Commun., 1987, 1528.
[20]A. M. Echavarren and J. K. Stille, J. Am. Chem. Soc., 1987, 109, 5478.
[21]W. J. Scott, J. Chem. Soc. Chem. Commun., 1987, 1755.
[22]G. K. Cook, W. J. Hornback, C. L. Jordan, J. H. McDonald III, and J. E. Munroe, J. Org. Chem., 1989, 54, 5828.
[23]M. G. Banwell, M. P. Collis, G. T. Crisp, J. N. Lambert, M. E. Reum, and J. A. Scoble,
J. Chem. Soc. Chem. Commun., 1989, 616.
[24]G. Martorell, A. Garcia-Raso, and J. M. Saa, Tetrahedron Lett., 1990, 31, 2357.
[25]V. Farina, S. R. Baker, D. A. Benigni, S. I. Hauck, and C. Sapino, Jr., J. Org. Chem., 1990, 55, 5833.
[26]N. Tamayo, A. M. Echavarren, M. C. Paredes, F. Fariña, and P. Noheda, Tetrahedron Lett., 1990, 31, 5189.
[27]M. H. Hedberg, A. M. Johansson, and V. Hacksell, J. Chem. Soc. Chem. Commun., 1992, 845.
[28]P. Mamos, A. A. Van Aerschot, N. J. Weyns, and P. A. Herdiwijn, Tetrahedron Lett., 1992, 33, 2413.
[29]J. G. Urones, I. S. Marcos, P. Basabe, N. M. Garrido, A. Jorge, R. F. Moro, and A. M. Lithgow, Tetrahedron, 1993, 49, 6079.
[30]A. I. Roshchin, N. A. Bumagin, and I. P. Beletskaya, Tetrahedron Lett., 1995, 36, 125.
[31]R. Rai, K. B. Aubrecht, and D. B. Collum, Tetrahedron Lett., 1995, 36, 3111.
[32]P. Knochel and P. Jones, Organozinc Reagents, Oxford University Press, Oxford, 1999, 354 pp.
[33]E. Piers, M. Jean, and P. S. Marrs, Tetrahedron Lett., 1987, 28, 5075.
[34]Y. Tamaru, H. Ochiai, T. Nakamura, and Z. Yoshida, Angew. Chem. Int. Ed. Engl., 1987, 26, 1157.
[35]L. Zhu, R. M. Wehmeyer, and R. D. Rieke, J. Org. Chem., 1991, 56, 1445.
[36]I. Klement, P. Knochel, K. Chau, and G. Cahiez, Tetrahedron Lett., 1994, 35, 1177.
[37]H. Stadtmüller, R. Lentz, C. E. Tucker, T. Stüdemann, W. Dörner, and P. Knochel, J. Am. Chem. Soc., 1993, 115, 7027.
[38]S. Gagneur, J. L. Montchamp, and E. Negishi, Organometallics, 2000, 19, 2417.
[39]S. Vettel, A. Vaupel, and P. Knochel, Tetrahedron Lett., 1995, 36, 1023.
[40]E. Nakamura and I. Kuwajima, Tetrahedron Lett., 1986, 27, 83.
