Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro group in organic sysnthesis - Feuer

.pdf
Скачиваний:
92
Добавлен:
15.08.2013
Размер:
4.7 Mб
Скачать

 

 

 

 

 

10.2 SYNTHESIS OF INDOLES

339

 

CH R1

H+

 

 

 

 

 

 

2

(Fisher)

 

 

 

 

 

N

R2

 

R1

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

H

 

 

 

 

R2

 

 

R1

O

 

 

 

 

 

 

 

N

 

 

 

 

 

PhNH2, H+

 

H

 

 

 

N

R2

 

 

 

 

 

(Bishler)

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeSCH2CO2R

SMe

 

R

 

 

 

 

 

H2/Ni

 

 

Et3N

 

R

 

O

R

 

(Gassman)

 

 

 

N

NHCl

 

N

 

NO2

 

 

 

 

 

H

 

 

 

H

 

 

 

 

CH2R

 

 

R

 

R

 

 

LDA

 

 

 

R

 

 

 

 

 

 

(Saegusa)

 

 

 

(Sundberg)

NC

N

 

N3

N

 

 

 

 

H

 

 

 

H

 

 

 

 

 

 

 

Scheme 10.5

 

 

 

OCH2Ph

 

 

OCH2Ph

 

 

OCH2Ph

 

 

 

N

 

 

 

Me

Me2NCH(OMe)2

 

 

Ra (Ni)

 

 

 

 

 

 

 

 

NO2

 

 

N2H4

N

NO2

N

 

 

 

 

H

 

95%

 

 

 

95%

 

H

 

 

 

 

(10.49)

This method has been applied to a large-scale preparation of 6-bromoindole, which reacts with various arylboronic acids via the Suzuki reaction to afford 6-arylindoles (Eq. 10.50).64 6-Bromo-5-methoxyindole for use in the synthesis of marine bromoindole65 and 5-amino-7- ethoxycarbonylindole for use in synthesis of 1H-pyrrolo[3,2-g]quinazoline ring system (Eq. 10.51)66 have been prepared from the appropriate o-nitrotoluene.

 

Me 1) (MeO)2CHNMe2

 

 

1) Pd(PPh3)4

 

 

 

 

pyrrolidine, DMF

 

 

 

 

N

 

2) H2, Raney Ni

 

N

2)

 

 

 

Br

Br

 

 

 

H

NO2

H

F

B(OH)2

F

 

 

 

 

 

90%

(10.50)

 

 

 

74%

 

 

 

Me

CO2Et

 

 

CO2Et

 

 

 

O

 

 

 

 

 

 

 

 

1) (MeO)2CHNMe2

 

 

 

 

 

NH

 

2) H2, Pd/C

 

N

NO2

 

 

 

 

 

 

 

 

 

O2N

NO2

 

H

 

 

 

N

 

 

 

 

96%

 

 

 

H

 

 

 

 

 

 

 

 

 

(10.51)

Batcho indole synthesis is a useful tool for synthesis of natural products. As outlined in Scheme 10.6, the Batcho indole synthesis is used for total synthesis of the slime mold alkaloid arcyriacyanin.67 Such indolocarbazole alkaloids represent a growing number of natural products isolated from soil organism, slime molds, and marine sources. They are important as antitumor compounds and protein kinase C and topoisomerase inhibitors.

Recently, synthesis of the 4-arylindole portion of the antitumor agent diazonamide has been achieved starting from 3-bromo-2-methylnitrobenzene via Suzuki coupling and the Batcho reaction.67b

340 SYNTHESIS OF HETEROCYCLIC COMPOUNDS

 

 

 

 

 

 

 

 

 

Me

 

NH2

 

 

OTHP

1) (MeO)2CHNMe2OTHP

 

 

O

N

O OTHP

 

 

 

 

 

CH3 1) KNO2, H2SO4

 

CH3

 

1) EtMg Br

 

 

 

 

2)

 

 

2) H2, pd/C

N

2)

Me

 

 

 

NO2

 

 

O

N

 

 

 

O

 

 

O

 

 

 

 

 

NO2

H

 

Br

N

 

N

 

 

1) 80%

 

 

 

 

 

 

60%

 

N

 

Boc

 

H

 

 

2) 82%

 

 

57%

 

 

 

 

Boc

 

 

 

 

 

 

 

 

 

R = THP

 

 

 

Me

 

 

 

Me

R = H

 

 

O

N

O OTf

 

O

N

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhN(SO2 CF3)2

 

 

Pd(OAc)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

N

N

 

N

 

 

 

 

 

 

 

H

 

 

 

 

 

 

Boc

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81%

 

 

 

 

 

 

 

92%

 

 

 

 

 

 

Scheme 10.6.

An important extension of this indole synthesis is the functionalization of the intermediate of indole. For example, acylation of the intermediate is possible (Scheme 10.7).68

The 2-aminophenethyl alcohols resulting from condensation of ortho-nitrotoluenes are good precursors for preparation of indoles. Watanabe and coworkers have developed ruthenium-cata- lyzed dehydrogenative N-heterocyclization for synthesis of indoles and other heterocycles from 2-aminophenethyl alcohols or 2-nitrophenylethyl alcohols (Eq. 10.52). 69a The oxidative cyclization of 2-aminophenethyl alcohols are also catalyzed by Pd-based catalysts.69

OH

 

 

Pd/C

N

 

RuCl2(PPh3)3

(10.52)

NO2

H

 

 

96%

 

A neat synthesis of 4-nitroindole depends on an acylation-deacylation sequence from 2-methyl-3-nitroaniline, as shown in Eq. 10.53.70 On the other hand, treatment of N-protected indoles with acetyl nitrate generated in situ at low temperature gives the corresponding

 

 

 

 

 

OEt

 

Me

1) (MeO)2CHNMe2,

 

O

dioxane-H2O

 

 

pyrrolidine, DMF

 

 

Br

NO2

2) EtOC6H4COCl,

 

NMe2

reflux

Et3N, PhH, reflux

 

 

 

 

 

Br

NO2

 

 

 

OEt

 

 

 

 

 

 

Na2S2O4

Br

N

 

 

O

H2O, EtOH, THF

H

 

Br

NO2

reflux

 

OEt

 

 

50% (overall)

 

 

63%

Scheme 10.7.

10.2 SYNTHESIS OF INDOLES 341

3-nitroindoles in good yields.71 The regioselective synthesis of nitroindoles is important for functionalization of indoles.72

NO2

 

NO2

 

 

NO2

HC(OEt)3

Me

 

(CO2Et)2, KOEt

 

Me

 

 

 

 

TsOH

N

OEt

DMF, DMSO

N

NH2

 

 

H

 

 

 

 

 

88%

 

 

71%

 

 

 

 

(10.53)

As discussed in Chapter 9, various nucleophiles can be introduced at the ortho position of nitroarenes via the VNS process. This provides a useful strategy for the synthesis of indoles. One of the most attractive and general methods of indoles and indolinones would be the reductive cyclization of α-nitroaryl carbonyl compounds (Eq. 10.54). The VNS and related reactions afford α-nitroaryl carbonyl compounds by a simple procedure. For example, alkylation of 4-fluoronitrobenzene with a lactone silyl enol ether followed by reductive cyclization leads to tryptophols (Eq. 10.55).73

 

 

 

 

 

 

 

R = alkyl

 

R

R = O-alkyl

 

 

X

R

H2, Pd/C

X

 

X

 

O

 

N

O

H2, Pd/C

N

 

 

 

(10.54)

 

 

 

NO2

 

 

H

 

 

 

H

NO2

 

 

 

NO2

 

 

OH

 

OSiMe3

 

O

F

 

 

+

1) F

 

O

1) DIBAL

 

 

 

2) DDQ

 

2) H2, Pd/C

N

(10.55)

 

O

 

 

F

 

 

 

F

 

H

 

 

 

 

 

 

 

 

 

 

79%

 

98%

 

 

 

 

 

 

 

The cyanomethylation of nitroarenes followed by alkylation and reductive cyclization yields indoles (see Chapter 9, which discusses the VNS reactions) (Eq. 10.56).74

CN

 

 

CN

 

CH2Ph

MeO

Ph3P-DEAD

MeO

 

 

MeO

CH2Ph

H2, Pd/C

 

PhCH2OH

 

 

N

 

 

 

 

NO2

DEAD

 

NO2

 

H

 

O

O

70%

56%

 

= EtOC–N=N–C–OEt

 

(10.56)

Improvement was reported in the synthesis of 7-alkoxyindoles by reaction of alkoxynitrobenzenes with vinylmagnesium bromide (Eq. 10.57).75 This reaction proceeds via the addition of the Grignard reagent ortho to the nitro group and subsequent [3,3]sigmatropic rearrangement (Bartori indole synthesis).76 This indole synthesis is applied to a short synthesis of the pyrrolophenanthridone alkaloid hippadine, as shown in Scheme 10.8.77

 

+

MgBr

THF

N

 

NO2

–78 ºC

(10.57)

 

H

OCHPh2 Ph2CHO

57%

342 SYNTHESIS OF HETEROCYCLIC COMPOUNDS

 

 

 

 

 

NO2

MgBr

 

KOH, DMSO

Br

N Br

 

 

THF, –70 ºC, 3 h

N

O

CH2Br

 

 

Br

 

 

 

 

H

 

 

 

 

 

 

 

Br

O

Br

 

72%

O

 

 

53%

 

RT, 2 h

 

 

 

 

 

 

 

 

 

 

 

 

O

 

2 BuLi, THF, –78 ºC

O

 

X = H2 (49%)

 

2 CuI, P(OEt)3, 3 h

O

N

X = O (79%)

 

 

to RT, 21 h

 

 

 

 

 

 

 

 

 

X

Scheme 10.8.

The intramolecular cyclization of nitrenes obtained either from deoxygenation of o-ni- trostyrene by trialkyl phosphites78 or from thermal or photochemical decomposition of o-azi- dostyrenes79 provides a useful method for the construction of indole nucleus (Cadogan-Sundberg indole synthesis). Holzapfel has used this method to synthesize several carbazoles and norharman from the appropriate 2-nitrobiphenyls and also several 2-methoxy- carbonylindoles from methyl o-nitrocinnamates.80 The novel generation of nitrenes from o-nitrostilbenes using CO and Se leads to an efficient synthesis of 2-arylindoles (Eq. 10.58).81 A new synthetic approach to the natural product arcyriaflavin-A, based on nitrene insertion, has been reported.81b

R

 

 

Se, Et3N

N

 

+ CO

(10.58)

DMF, 100 ºC

H

 

NO2

65–78%

R

R = Me, OMe, CF3

 

The metal carbonyls Fe(CO)5, Ru3(CO)12, and Rh6(Co)16 are catalysts for the deoxygenation of o-nitrostyrenes under carbon monoxide pressure to give indole derivatives (Eq. 10.59).82

CO2Me

 

CO2Me

+ 2CO

Fe(CO)3

N

220 ºC

(10.59)

 

 

H

 

NO2

 

 

 

75%

 

The Sundberg indole synthesis using aromatic azides as precursors of nitrenes has been used in synthesis of various indoles. Some kinds of aryl azides are readily prepared by SNAr reaction of aromatic nitro compounds with an azide ion. For example, 2,4,6-trinitrotoluene (TNT) can be converted into 2-aryl-4,6-dinitroindole, as shown in Eq. 10.60.83

Me

OHC

O2N

NO2

O2N

NO2

O2N

CHO

 

 

 

NO2

 

 

 

 

 

(piperidine)

NO2

 

NO2

 

 

-H2O

 

 

 

 

 

 

NO2

67%

 

 

 

10.2

SYNTHESIS OF INDOLES 343

O2N

N3

N3

NO2

NaN3, DMF

 

 

 

- NaNO2

NO

 

NO

 

2

 

2

 

 

73%

 

 

O2N

 

NO2

HOCH2CH2OH

 

N

(10.60)

 

 

N

160 ºC

 

H

H

 

NO2

NO2

 

 

71%

 

The previously unknown 2-nitroindoles have been conveniently prepared from o-nitroben- zaldehyde via the Sundberg indole synthesis (Eq. 10.61).84

CHO

CHO 1) MeNO2, KOH,

NO2

 

NaN3, DMF

 

 

EtOH

N3

 

60 ºC

 

2) Ac2O, pyridine

NO2

N3

81%

 

 

 

 

 

 

 

 

Xylene

 

NO2

(10.61)

 

 

 

 

 

N

 

 

140 ºC

 

 

 

 

 

H

 

 

 

 

 

54%

 

Soderberg and coworkers have developed a palladium-phosphine-catalyzed reductive N-het- eroannulation of 2-nitrostyrenes forming indoles in good yields.85 For example, reaction of 6-bromo-2-nitrostyrene with carbon monoxide in the presence of a catalytic amount of palladium diacetate (6 mol%) and triphenylphosphine (24 mol%) in acetonitrile at 70 °C, gives 4-bromoindole in 86% yield (Eq. 10.62). Several functional groups, such as esters, ethers, bromides, triflates, and additional nitro groups, have been shown to be compatible with the reaction conditions.

Br

Br

 

Pd(OAc)2

(10.62)

Ph3P, CO

N

NO2

H

 

86%

With the use of this methodology, 2,4-dimethylindole, 4-(hydroxymethyl)-2-methylindole, and 4-(methoxymethyl)-2-methylindole are readily obtained, as shown in Eq. 10.63.86 These indoles have been recently isolated from European Basidmycetes.87 Watanabe and coworkers have used a catalytic amount of PdCl2(PPh3)2-SnCl2 under carbon monoxide for reductive N-heterocyclization of o-nitrostyrenes.88

Me

Me

 

 

 

Pd(OAc)2

Me

(10.63)

Ph3P, CO

N

 

NO2

H

 

66%

344 SYNTHESIS OF HETEROCYCLIC COMPOUNDS

Fused indoles, as shown in Eq. 10.64, are also prepared by this method.85a

MeO2C CO2Me

MeO2C CO2Me

Pd(OAc)2

(10.64)

 

dppp, DMF

 

 

CO (60 psi)

N

NO2

120 ºC

H

 

 

61%

Similar to the Fisher indole synthesis, reductive cyclization of nitro aromatics offers a powerful means of forming indoles. Reductive cyclization of ortho, 2′-dinitrostyrenes has occurred in many ways, by TiCl3, NaBH4-Pd/C, H2-Pd/C, and other reductive methods.89 Corey and coworkers have used the Borchardt modification (Fe-AcOH, silica gel, toluene at reflux for the reductive cyclization of o-β-dinitrostyrenes) to prepare 6,7-dimethoxyindole (Eq. 10.65) in a total synthesis of aspidophytine (see Schemes 3.3 and 3.4 in Section 3.2.1).89d

 

 

NO2

 

 

 

 

Fe, AcOH

N

 

MeO

NO2

MeO

(10.65)

silica gel

H

 

 

OMe

toluene,

OMe

 

 

 

71%

 

 

 

 

 

Tin-mediated-radical cyclization of isonitriles provides a useful strategy for the preparation of indoles (Fukuyama reaction).90 This radical cyclization is used for synthesis of 6-hydroxy- indole-3-acetic acid, which is the aromatic subunit of Nephilatoxin. The requisite isonitriles are prepared from nitroarenes via amines (Eq. 10.66).91

 

 

 

CO2Me

 

 

 

 

 

CO2Me

 

 

 

Zn. AcOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhCH2O

NO2

 

 

PhCH2O

NH2

 

 

 

 

96%

 

 

 

 

 

 

 

CO2Me

 

 

 

AcOCHO

 

 

 

 

 

 

POCl3

 

 

pyridine

 

PhCH2O

NHCHO

 

Et3N, CH2Cl2

 

 

 

 

 

96%

 

 

 

 

 

 

 

 

 

 

 

CH2CO2Me

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu3SnH

 

 

 

(10.66)

PhCH2O

NC

AIBN

 

PhCH2O

 

N

 

83%

H

92%

 

 

 

 

 

 

 

The classic Reissert indole synthesis, involving the reductive cyclization of o-ni- trophenylpyruvic acid, has been used for synthesis of 2-ethoxycarbonyl-4-alkoxymethylindo- les.92 The modified Reissert reaction, involving the reductive cyclization of an o-nitrophenyl acetoaldehyde, has been adapted to solid-phase synthesis.93

Kraus has reported the synthesis of a tricyclic indole related to the pyrroloiminoquinone marine natural products (Scheme 10.9), in which an intramolecular SNAr and the reductive cyclization of a nitro aldehyde are involved as key steps.94 Related target compounds have been prepared by Joule and coworkers via a similar strategy.95

 

 

 

 

10.2 SYNTHESIS OF INDOLES

345

OMe

OMe

 

 

OMe

 

O2N

NO2

 

 

1)

 

O2N

NO2

 

O O O

 

OMe

 

 

 

 

1) t-BuOK, CAN

 

 

 

2) HNO3-H2SO4

 

O

2) BH3

CHO

 

3) CH2N2

HN

 

3) DIBAL

 

NH2

O

 

 

HN

 

 

 

 

OMe H

 

 

 

 

 

 

 

 

 

O2N

N

 

 

 

H2, Pd/C

 

 

 

 

HN

42%

Scheme 10.9.

Rawal and Kozmin have utilized a Reissert type reaction in the total synthesis of tabersonine. The requisite nitro ketone is prepared by SNAr reaction of o-nitrophenylphenyliodonium fluoride with ketone silyl enol ether (Scheme 10.10).96

The reductive cyclization of o-nitrophenylacetic acids or esters gives oxyindoles, which has been applied to preparation of 6-hydroxy-7-methoxyoxyindole in a synthesis of (+)-paraher- quamide B (Scheme 10.11).42

The pyrrolo[2,3-d]pyrimidine anticancer agent is prepared utilizing, as a key sequence, Michael condensation of 2,6-diamino-4(3H)-pyrimidinone with nitroalkenes, followed by the Nef reaction that leads to the annulated pyrrole ring (Eq. 10.67).98

 

 

 

 

 

NO2

 

 

 

O

 

O

 

 

 

 

CO2Et

NO2

 

 

 

EtOAc-H2O

+

HN

 

HN

 

 

50 ºC

 

 

 

 

 

H2N N NH2

CO2Et

 

H2N N NH2

 

 

 

 

 

91%

 

 

 

 

O

CO2H

 

 

 

 

 

 

1) NaOH

HN

 

(10.67)

 

2) H2SO4

 

 

 

H2N

N N

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

57%

 

Annulation of pyridine to indole is accomplished by a tandem aza-Wittig/electrocyclization strategy as shown in Eq. 10.68.99

 

 

MeO2C

MeO

C

MeO2C

 

N

2

N

I

 

N

 

 

 

NO2

F

 

TiCl3, NH4OAc

 

DMSO, THF

NO2

aq THF

 

 

 

N

 

TBSO

 

O

H

 

 

 

94%

89%

Scheme 10.10.

346 SYNTHESIS OF HETEROCYCLIC COMPOUNDS

 

 

 

 

 

R2

R1

H

Me

O

(–)-paraherquamide A, R

1

= OH, R

2

3

= H2, X = N

 

 

Me

 

= Me, R

 

 

O Me

NH

(–)-paraherquamide B, R1 = H, R2 = H, R3 = H2, X = N

 

O

 

X

N

 

 

 

 

(–)-paraherquamide C, R1 = R2 = CH2, R3 = H2, X = N

 

R3

 

 

O Me

(–)-paraherquamide D, R1 = O, R2 = CH2, R3 = H2, X = N

 

 

 

 

(–)-paraherquamide E, R1 = H, R2 = Me, R3 = H2, X = N

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 10.11.

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PPh3

 

R-NCO

 

 

R

 

 

 

 

 

 

 

 

 

 

N

N N

 

(10.68)

 

 

 

 

 

toluene

 

 

 

 

 

 

N N

 

Ph

H

 

 

 

 

 

 

Ph

reflux

 

 

 

 

 

 

 

 

 

 

 

 

79–97%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A novel indole ring formation involving DBU nucleophilic addition to 1,3,5-trinitrobenzene

has appeared as shown in Eq. 10.69.100

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DBU

 

 

N

 

(10.69)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

NO2

 

 

O2N

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11%

 

 

10.3 SYNTHESIS OF OTHER NITROGEN HETEROCYCLES

10.3.1 Three-Membered Ring

The direct aziridination of nitroalkanes has been reported for the first time. Treatment of nitroalkene with an excess of CaO and NsONHCO2Et (Ns = 4-nitrobenzenesulfonyl) gives the α-nitroaziridine in good yields (Eq. 10.70).101 The reaction proceeds via aza-Michael reaction followed by a ring closure.

 

 

 

 

R1

 

R2

 

 

R2

 

CaO

 

 

NO2

 

R1

+

NsONHCO2Et

N

 

CH2Cl2

 

(10.70)

 

NO2

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62–84%

 

10.3.2 Fiveand Six-Membered Saturated Rings

Pyrrolidines are structural subunits found in many natural and unnatural products, which have important biological activity.102 Depending on the substitution pattern and functionalization, pyrrolidines have been shown to be effective antibacterials,103 neuroexcitatory agents,104 potent venom,105 and glyosidase inhibitors.106

Nitro compounds have been extensively used for synthesis of pyrrolidines as discussed in Chapter 4 on the Michael addition and Chapter 8 on cycloaddition. Tandem [2 + 4]/[2 + 3]

10.3 SYNTHESIS OF OTHER NITROGEN HETEROCYCLES 347

cycloaddition using nitroalkenes provides an excellent route to stereoselective synthesis of pyrrolidines. This section describes the routes to the synthesis of pyrrolidines based on the Michael addition. The Michael addition of nitro compounds to α,β-unsaturated carbonyl compounds or esters followed by reduction gives pyrrolidines or related compounds. cis-2,3- Disubstituted pyrrolidines are available from nitro ketones, which are prepared by the Michael addition of nitromethane to enones. Reduction of the nitro ketones with Raney Ni gives the pyrrolines, which, on NaBH3CN reduction, give quantitative yields of cis-2,3-disubstituted pyrrolidines (Eq. 10.71).107

R

1

NO2 H2, Raney Ni

R2

 

R2

 

 

NaBH3CN

 

 

 

 

 

 

 

 

R2 O

R1

N

R1

N

(10.71)

 

 

 

 

H

 

cis

Ruthenium complex catalyzes reductive N-heterocyclization of γ-nitroketones to give pyrroline derivatives (Eq. 10.72).108

 

Me Me

 

Me

 

Ph

Ru(CO)12, CO

Ph

 

NO2

N Me

(10.72)

 

 

O

50%

 

 

N N

cis-2,5-Disubstituted pyrrolidines are prepared by the Michael addition of nitro compounds to enones followed by reduction with H2-Pd/C. This strategy has been widely used for synthesis of various alkaloids. Stevens and Lee have reported stereoselective total synthesis of the tail pheromone of the Pharaoh ant (Scheme 10.12)109 and gephyrotoxin 223, neurotoxic alkaloids

Cl

 

Mg, THF

O

O

MnO2

O

O

 

 

O O

 

H

OH

 

 

O

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

CH3(CH2)4NO2

 

O O

O

 

H2, Pd/C

O

O

H

N

H

TMG

 

 

O2N

(CH2)3CH3

 

 

2

 

 

 

 

64%

 

 

 

CO2

 

(CH2)3CH3

 

 

 

 

 

 

CO2H

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

H

 

 

 

 

H

O+

 

 

 

pH 3.8–5.4

 

 

 

 

 

3

N

 

 

N

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

H

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

(CH2)3CH3

 

Me

(CH2)3CH3

 

 

 

 

 

 

 

H

 

 

 

 

 

NaCNBH3

N

H

Me (CH2)3CH3

68%

Scheme 10.12.

348 SYNTHESIS OF HETEROCYCLIC COMPOUNDS

 

 

 

 

 

 

 

 

 

 

 

O

 

 

SOPh

 

 

 

 

 

 

 

 

 

 

SOPh

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O Br

O

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70%

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

CH3(CH2)4NO2

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

O

O

 

 

TMG

 

O

 

 

(CH2)3CH3

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

H O+

 

 

 

 

 

 

 

 

 

H

, Raney Ni

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

3

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

CO2

H2N

H

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2H

 

 

(CH2)3CH3

 

 

 

 

H

(CH2)3CH3

 

 

 

 

 

64%

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KCN

 

H

 

 

 

 

R = CN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

R = CHO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

(CH2)3CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96%

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 10.13.

(Scheme 10.13).110 New alkaloids from ants, (3R, 5S, 9R)-3-butyl-5-(1-oxopropyl)indolizidine and (3R, 5R, 9R)-3-butyl-5-(1-oxopropyl)indolizidine, are identified and synthesized as outlined in Scheme 10.14.111

Battersby and coworkers have developed selective methods for total synthesis of chlorins on a model system, as shown in Scheme 10.15, in which the Michael addition of 5-(2-nitroethyl) pyrrole to enone and reductive cyclization are used as key steps.112

O

EtONa

EtO

 

+

EtOH

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

O

 

 

O

H

 

 

 

 

 

 

 

 

 

 

 

 

EtO

 

 

H2, Pd/C

EtO

 

 

 

 

EtOH

 

HN

 

 

 

O2N

90%

H

 

 

 

 

 

 

O (CH2)3CH3

 

 

(CH2)3CH3

 

 

80%

 

 

 

 

H

 

H

 

 

 

LDA

 

 

 

R = OEt

 

 

N

+

N

R = OH

 

 

I2

(CH2)3CH3

 

(CH2)3CH3

R = Et

 

 

 

R

 

 

 

 

R O

O

 

 

 

 

16%

 

49%

 

 

 

 

 

 

 

 

Scheme 10.14.

Соседние файлы в предмете Химия