Fitts D.D. - Principles of Quantum Mechanics[c] As Applied to Chemistry and Chemical Physics (1999)(en)
.pdf
Laguerre and associated Laguerre polynomials |
315 |
To evaluate the left-hand integral, we substitute the analytical forms of the generating functions from equation (F.10) to give
|
|
|
|
|
|
|
|
|
(st) j |
|
|
|
|
|
|
1 |
|
|
|
|
||||
|
I |
|
|
|
|
|
|
…0 |
rj íeÿar dr |
(F:18) |
||||||||||||||
where |
(1 ÿ s)j 1(1 ÿ t)j 1 |
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
1 |
|
s |
|
|
|
t |
|
|
|
|
|
1 ÿ st |
|
|
||||||
|
|
1 ÿ s |
1 ÿ t |
(1 ÿ s)(1 ÿ t) |
|
|||||||||||||||||||
|
|
|
|
|
|
|||||||||||||||||||
The integral in equation (F.18) is just the gamma function (A.26), so that |
|
|||||||||||||||||||||||
1 |
|
|
|
|
|
|
|
|
Ã(j |
í 1) |
|
|
|
( j |
í)! |
|
|
|
|
|||||
…0 |
rj íeÿar dr |
|
|
|
|
|
, |
|
j í . 0 |
|
||||||||||||||
a j í 1 |
|
aj í 1 |
|
|
||||||||||||||||||||
where we have restricted í to integer values. Thus, I in equation (F.18) is |
|
|||||||||||||||||||||||
|
|
|
I |
|
|
(j í)!(st)j(1 ÿ s)í(1 ÿ t)í |
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
(1 |
ÿ |
st) j |
í |
|
1 |
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Applying the expansion formula (A.3), we have |
|
|
|
|
|
|
|
|
||||||||||||||||
|
(1 |
ÿ |
st)ÿ( j í 1) |
|
|
|
1 |
( j í i)! |
(st)i |
|
||||||||||||||
|
|
|
|
|
|
|
|
i 0 (j í)!i! |
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|||
If we replace the dummy index i by á, where á i j, then this expression becomes
|
|
|
X |
|
||
(1 |
ÿ |
st)ÿ( j í 1) |
1 |
(á í)! |
(st)áÿ j |
|
á j ( j í)!(á ÿ j)! |
||||||
|
|
|
||||
and I takes the form
I (1 ÿ s)í(1 ÿ t)í X1 (á í)! (st)á á j (á ÿ j)!
Combining this result with equation (F.17), we have |
|
|
|
|
|
|
|||||||||||||
1 1 sá tâ |
1 |
|
j íeÿr L j ( |
|
)L j |
( |
|
) d |
|
(1 |
|
s)í(1 |
|
t)í |
1 |
(á í)! |
(st)á |
(F:19) |
|
|
|
…0 |
r |
r |
r |
r |
ÿ |
ÿ |
|||||||||||
á j â j á!â! |
á |
â |
|
|
|
|
|
á j (á ÿ j)! |
|
|
|||||||||
XX |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
||
We now equate coef®cients of like powers of s and t on each side of this equation. Since the integer í appears as an exponent of both s and t on the right-hand side, the effect of equating coef®cients depends on the value of í. Accordingly, we shall ®rst have to select a value for í.
For í 0, equation (F.19) becomes
1 1 sá tâ |
1 |
rjeÿr Láj (r)Lâj |
1 |
á! |
(st)á |
á j â j á!â! |
…0 |
(r) dr á j |
(á ÿ j)! |
||
XX |
|
|
X |
|
|
Since the exponent of s on the right-hand side is always the same as the exponent of t, the coef®cients of sá tâ…for1 á 6â on the left-hand side must vanish, i.e.
r |
jeÿr L j ( |
r |
)L j |
( |
r |
) d |
r |
0; |
á â |
(F:20) |
á |
â |
|
|
|
6 |
|
0
Thus, the associated Laguerre polynomials form an orthogonal set over the range
0 < r < 1 with a weighting factor rjeÿr. For the case where s and t on the left-hand side have the same exponent, we pick out the term â á in the summation over â, giving
316 |
|
X |
|
|
Appendix F |
|
|
|
|
|
|
|
|
|
|
||||
|
|
1 |
|
|
|
|
X |
á! |
|
|
|
|
|
||||||
|
|
1 (st)á |
|
|
|
1 |
|
|
|
|
|
|
|
||||||
|
|
|
|
…0 |
rjeÿr[Láj (r)]2 dr á j |
|
|
|
(st)á |
|
|
||||||||
|
|
á j (á!)2 |
(á ÿ j)! |
|
|
||||||||||||||
Equating coef®cients of (st)á on each side yields |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
1 |
|
|
|
(á!)3 |
|
|
|
|
|
|
|
||||
|
|
|
|
…0 |
rjeÿr[Láj (r)]2 dr |
|
|
|
|
|
|
|
|
(F:21) |
|||||
|
|
|
|
(á ÿ j)! |
|
|
|
|
|||||||||||
Equations (F.20) and (F.21) may be combined into a single expression |
|
|
|||||||||||||||||
|
|
1 |
|
|
|
|
(á!)3 |
|
|
|
|
|
|
|
|||||
|
|
|
…0 |
rjeÿr Láj (r)Lâj (r) dr |
|
äáâ |
|
|
|
|
(F:22) |
||||||||
|
|
|
(á ÿ j)! |
|
|
|
|
||||||||||||
For í 1, equation (F.19) becomes |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
XX |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 1 sá tâ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
á j â j á!â! |
…0 |
rj 1eÿr Láj (r)Lâj (r) dr |
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
1 |
(á 1)! |
[(st)á |
|
(st)á 1 |
ÿ |
sá 1 tá |
ÿ |
sá tá 1] |
||||||
|
|
|
|
|
á j (á ÿ j)! |
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
||
Equating coef®cients of like powers of s and t on both sides of this equation, we see
that
…1
|
|
|
|
|
r |
j 1eÿr L j |
( |
)L j ( |
r |
) d |
r |
|
0; |
â á, á |
|
1 |
(F:23) |
|||||||||
|
|
|
|
0 |
|
|
á |
r |
|
|
â |
|
|
|
6 |
|
|
|
||||||||
and that |
|
…0 |
|
r |
|
|
á |
|
r |
á 1 |
|
r |
|
|
r ÿ |
(á ÿ j)! |
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
1 |
|
j 1eÿr L j ( |
|
)L j |
|
( |
|
) d |
|
á![(á 1)!]2 |
|
(F:24) |
|||||||||
…0 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
r |
á |
r |
|
|
r |
|
(á ÿ j)! |
|
(á ÿ 1 ÿ j)! |
|
(á ÿ j)! |
|
||||||||||||||
1 |
|
j 1eÿr[L j ( |
|
)]2 d |
|
|
|
(á!)2 |
(á |
|
1)! |
|
|
|
|
á! |
|
|
(2á ÿ j 1)(á!)3 |
(F:25) |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
The term in which â á ÿ 1 is equivalent to the term in which â á 1 after the dummy indices á and â are interchanged. Equations (F.23), (F.24), and (F.25) are pertinent to the wave functions for the hydrogen atom.
Completeness
We de®ne the set of functions ÷kj(r) by the relation
÷kj(r) |
(k j)! |
rjeÿr |
1=2 |
|
|
j |
|
|
|||
ÿ |
Lk |
(r) |
(F:26) |
||
(k!)3 |
According to equation (F.22), the functions ÷kj(r) constitute an orthonormal set. We now show1 that this set is complete.
Substitution of equation (F.15) into (F.26) gives
|
ÿ jer |
1=2 dkÿ j |
|
|||
÷kj(r) (ÿ1) j |
r |
|
|
|
(rk eÿr) |
(F:27) |
k!(k ÿ j)! |
drkÿ j |
|||||
If we apply equation (A.11), we may express the derivative in (F.27) as
1D. Park, personal communication. This method parallels the procedure used to demonstrate the completeness of the set of functions in equation (D.15).
Series solutions of differential equations |
319 |
series expansion of u is valid for many differential equations in which p(x), q(x), and/ or r(x) are functions other than polynomials,2 but such differential equations do not occur in quantum-mechanical applications.
The Frobenius procedure consists of the following steps.
1.Equations (G.2), (G.3), and (G.4) are substituted into the differential equation (G.1) to obtain a series of the form
X1
ak [(k s)(k s ÿ 1) p(x)x k sÿ2 (k s)q(x)x k sÿ1 r(x)x k s] 0
ck x k sÿ2 0 |
(G:5) |
k á |
|
k 0 |
|
2. The terms are arranged in order of ascending powers of x to obtain |
|
1 |
|
X |
|
where the coef®cients ck are combinations of the constant s, the coef®cients ak , and the coef®cients in the polynomials p(x), q(x), and r(x). The lower limit á of the summation is selected such that the coef®cients ck for k , á are identically zero, but cá is not.
3.Since the right-hand side of equation (G.5) is zero, the left-hand side must also equal zero for all values of x in an interval that includes x 0. The only way to
meet this condition is to set each of the coef®cients ck equal to zero, i.e., ck 0 for k á, á 1, . . .
4.The coef®cient cá of the lowest power of x in equation (G.5) always has the form cá a0 f (s), where f (s) is quadratic in s because the differential equation is
|
second-order. The expression cá a0 f (s) 0 is called the indicial equation and |
|
has two roots, s1 and s2, assuming that a0 60. |
5. |
For each of the two values of s, the remaining expressions ck 0 for k á 1, |
|
á 2, . . . determine successively a1, a2, . . . in terms of a0. Each value of s yields |
|
a different set of values for ak ; one set is denoted here as ak , the other as a9k . |
6. |
The two mathematical solutions of the differential equation are u1 and u2 |
|
u1 a0 xs1 [1 (a1=a0)x (a2=a0)x2 ] |
|
u2 a90 xs2 [1 (a91=a90)x (a92=a90)x2 ] |
where a0 and a90 are arbitrary constants. Physical solutions are obtained by applying boundary and normalization conditions to u1 and u2.
7.For some differential equations, the two roots s1 and s2 of the indicial equation differ by an integer. Under this circumstance, there are two possible outcomes: (a) steps 1 to 6 lead to two independent solutions, or (b) for the larger root s1, steps 1 to 6 give a solution u1, but for the root s2 the recursion relation gives in®nite values for the coef®cients ak beyond some speci®c value of k and therefore these steps fail to provide a second solution. For some other differential equations, the two roots of
2See for example E. T. Whittaker and G. N. Watson (1927) A Course of Modern Analysis, 4th edition (Cambridge University Press, Cambridge), pp. 194±8; see also the reference in footnote 1 of this Appendix.
|
|
|
|
|
|
|
|
|
|
|
Series solutions of differential equations |
|
|
|
321 |
|
||||||||||||||||||||
|
We ®rst investigate the asymptotic behavior of ö(î). For large values of î, the |
|
|
|
|
|||||||||||||||||||||||||||||||
constant 2ë 1 may be neglected in comparison with î2 and equation (G.8) becomes |
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ö0 î2ö |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
The approximate solutions of this differential equation are |
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
because we have |
|
|
|
|
|
|
|
|
ö ce î2=2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
The function e |
î2 |
=2 |
|
|
|
ö0 (î2 1)ö î2ö |
|
for large î |
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
is not a satisfactory solution because it becomes in®nite as |
|
|
|
|
|||||||||||||||||||||||||||||
î ! 1, but the function eÿî2=2 is well-behaved. This asymptotic behavior of ö(î) |
|
|||||||||||||||||||||||||||||||||||
suggests that a satisfactory solution of equation (G.8) has the form |
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ö(î) u(î)eÿî2=2 |
|
|
|
|
|
|
|
|
|
(G:9) |
|
|||||||||
where u(î) is a function to be determined. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
Substitution of equation (G.9) into (G.8) gives |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u0 ÿ 2îu9 2ëu 0 |
|
|
|
|
|
|
|
(G:10) |
|
||||||||||||
We solve this differential equation by the series solution method. Applying equations |
|
|||||||||||||||||||||||||||||||||||
(G.2), (G.3), and (G.4), we obtain |
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
1 |
ak (k s)(k s ÿ 1)îk sÿ2 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
k 0 |
|
ak [ÿ2(k s) 2ë]îk s 0 |
(G:11) |
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
The coef®cient of îsÿ2 gives the indicial equation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a0 s(s ÿ 1) 0 |
|
|
îsÿ1 gives |
(G:12) |
|
|||||||||||||||||
with two solutions, s |
0 and s |
1. The coef®cient of |
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a1(s 1)s 0 |
|
|
|
|
|
|
|
|
|
(G:13) |
|
|||||||||
For the case s 0, the coef®cient a1 has an arbitrary value; for s 1, we have a1 0. |
|
|||||||||||||||||||||||||||||||||||
|
If we omit the ®rst two terms (they vanish according to equations (G.12) and |
|
|
|
|
|||||||||||||||||||||||||||||||
(G.13)) in the ®rst summation on the left-hand side of (G.11) and replace the dummy |
|
|||||||||||||||||||||||||||||||||||
index k by k 2 in that summation, we obtain |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
1 |
fak 2(k s 2)(k s 1) ak [ÿ2(k s) 2ë]gîk s 0 |
(G:14) |
|
||||||||||||||||||||||||||||||
|
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
k 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Setting the coef®cient of each power of î equal to zero gives the recursion formula |
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
a |
k 2 |
(k |
|
|
2(k s ÿ ë) |
|
1) |
a |
k |
|
|
|
(G:15) |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s |
|
2)(k |
|
s |
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
For the case s 0, the constants a0 and a1 are arbitrary and we have the following |
|
||||||||||||||||||||||||||||||||||
two sets of expansion constants |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
a0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a1 |
|
2(1 ÿ |
ë) |
|
|
|
|
|
|
|
|
|
|
||
a |
ÿ |
ëa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
|
a |
|
|
|
|
|
|
|
|
||||||
2 |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
3! |
1 |
|
|
|
|
|
|
|
|||||||
a |
|
2(2 ÿ ë) |
a |
|
ÿ |
22 |
ë(2 ÿ ë) |
a |
|
|
|
|
|
a |
|
2(3 ÿ ë) |
a |
|
|
22(1 ÿ ë)(3 ÿ ë) |
a |
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
4 |
|
4 . 3 |
|
|
2 |
|
4! |
|
|
|
0 |
|
|
|
|
5 |
|
5 . 4 |
3 |
5! |
|
|
1 |
|
|
|||||||||||
a |
|
2(4 ÿ ë) |
a |
|
ÿ |
23 |
ë(2 ÿ ë)(4 ÿ ë) |
a |
|
a |
|
2(5 ÿ ë) |
a |
|
|
23(1 ÿ ë)(3 ÿ ë)(5 ÿ ë) |
a |
|
||||||||||||||||||
|
|
|
|
|
||||||||||||||||||||||||||||||||
6 |
|
6 . 5 |
|
|
4 |
|
|
6! |
|
|
|
|
|
|
0 |
7 |
|
7 . 6 |
5 |
7! |
|
|
|
|
1 |
|||||||||||
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Thus, the two solutions of the second-order differential equation (G.10) are
