Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Fitts D.D. - Principles of Quantum Mechanics[c] As Applied to Chemistry and Chemical Physics (1999)(en)

.pdf
Скачиваний:
51
Добавлен:
15.08.2013
Размер:
1.57 Mб
Скачать

Appendix C

Dirac delta function

The Dirac delta function ä(x) is de®ned by the conditions

 

ä(x) 0,

for x 60

(C:1)

such that

1,

for x 0

 

1

 

 

 

 

 

 

ÿ1ä(x) dx 1

(C:2)

As a consequence of this de®nition, if f (x) is an arbitrary function which is wellde®ned at x 0, then integration of f (x) with the delta function selects out the value

of f (x) at the origin

f (x)ä(x) dx f (0) (C:3)

The integration is taken over the range of x for which f (x) is de®ned, provided that the

range includes the origin. It also follows that

f (x)ä(x ÿ x0) dx f (x0) (C:4)

since ä(x ÿ x0) 0 except when x x0. The range of integration in equation (C.4) must include the point x x0.

The following properties of the Dirac delta function can be demonstrated by multiplying both sides of each expression by f (x) and observing that, on integration, each side gives the same result

ä(ÿx) ä(x)

(C:5a)

1

 

 

ä(cx)

 

ä(x), c real

(C:5b)

jcj

xä(x ÿ x0) x0ä(x ÿ x0)

(C:5c)

xä(x) 0

(C:5d)

f (x)ä(x ÿ x0) f (x0)ä(x ÿ x0)

(C:5e)

As de®ned above, the delta function by itself lacks mathematical rigor and has no meaning. Only when it appears in an integral does it have an operational meaning. That two integrals are equal does not imply that the integrands are equal. However, for the sake of convenience we often write mathematical expressions involving ä(x) such

292

1 1 å å å dx å 2 2

Dirac delta function

293

as those in equations (C.5a±e). Thus, the expressions (C.5a±e) and similar ones involving ä(x) are not to be taken as mathematical identities, but rather as operational identities. One side can replace the other within an integral that includes the origin, for ä(0), or the point x0 for ä(x ÿ x0).

The concept of the Dirac delta function can be made more mathematically rigorous by regarding ä(x) as the limit of a function which becomes successively more peaked at the origin when a parameter approaches zero. One such function is

 

 

 

 

ä(x)

 

lim

1

 

 

eÿx22

 

 

 

 

 

ð1=2

å

 

 

 

 

 

 

 

 

å

!

0

 

 

since

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

2

 

 

2

 

 

 

 

 

 

 

 

ÿ1eÿx

 

dx 1

 

 

 

 

ð1=2å

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eÿx

 

! 1 as x ! 0, å ! 0

 

å

 

 

Equation (C.3) then becomes

 

 

 

! 0 as x ! 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

x22

 

å!0

 

ÿ1 f (x)eÿ

 

 

 

dx f (0)

ð1=2å

 

 

 

lim

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other expressions which can be used to de®ne ä(x) include

lim

1

 

 

å

ð x2 å2

å!0

and

 

 

 

 

 

lim

 

1

eÿjxj=å

å!0

 

The delta function is the derivative of the Heaviside unit step function H(x), de®ned

as the limit as å ! 0 of H(x, å) (see Figure C.1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

H(x, å)

 

0

 

 

 

for

x ,

ÿå

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

1

 

for

 

ÿå

< x <

 

å

 

å

 

2

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

å

 

 

 

 

 

1

 

 

 

for

x .

 

 

 

 

 

 

 

 

2

 

 

Thus, in the limit we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(x)

0

for

x , 0

 

 

 

 

 

 

 

 

21

for

x 0

 

 

 

 

 

 

 

 

1

for

x . 0

 

 

and d H=dx, which equals ä(x), satis®es equation (C.1). The differential d H(x, å) equals dx=å for x between ÿå=2 and å=2 and is zero otherwise. If we take the integral

of ä(x) from ÿ1 to 1, we have

1 1 1 å=2

ä(x) dx d H lim dH(x, å) 1

ÿ1

ÿ1

å!0 ÿ1

ÿå=2

294

Appendix C

H(x, å)

 

 

 

1

 

 

 

2å/2

0

å/2

x

H(x)

 

 

 

1

 

 

 

1

 

 

 

2

 

 

 

 

0

 

x

Figure C.1 The Heaviside unit step function H(x), de®ned as the limit as å ! 0 of H(x, å).

and condition (C.2) is satis®ed.

We next assume that the derivative ä9(x) of ä(x) with respect to x exists. If we integrate the product f (x)ä9(x) by parts and note that the integrated part vanishes, we

obtain

1

1

 

f (x)ä9(x) dx ÿ f 9(x)ä(x) dx ÿf 9(0)

ÿ1 ÿ1

where f 9(x) is the derivative of f (x). From equations (C.5a) and (C.5d), it follows that ä9(ÿx) ä9(x)

 

 

 

xä9(x) ÿä(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

We may also evaluate the Fourier transform ä(k) of the Dirac delta function

 

ä(x ÿ x0)

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

ä(k) pÿ1ä(x ÿ x0)eÿikx dx peÿikx0

 

The inverse Fourier transform••••••

 

 

 

 

 

 

 

••••••

 

 

 

then gives an integral representation of the delta

 

function

 

 

 

 

 

 

 

 

 

1

1

 

 

 

 

1

1

(C:6)

ä(x ÿ x0) p

ÿ1ä(k) eikx dk

ÿ1eik(xÿx0) dk

 

 

••••••

 

 

 

 

 

 

 

 

 

The Dirac delta function may be readily generalized to three-dimensional space. If r represents the position vector with components x, y, and z, then the three-dimensional delta function is

ä(r ÿ r0) ä(x ÿ x0)ä(y ÿ y0)ä(z ÿ z0) and possesses the property that

Dirac delta function

295

f (r)ä(r ÿ r0) dr f (r0)

 

or, equivalently

 

 

… … … f (x, y, z)ä(x ÿ x0)ä( y ÿ y0)ä(z ÿ z0) dx d y dz f (x0, y0, z0)

 

where the range of integration includes the points x0, y0, and z0. The integral

 

representation is

 

 

1

1

 

ä(r ÿ r0)

 

ÿ1eik(rÿr0) dk

(C:7)

(2ð)3

where k is a vector with components kx, ky, and kz and where dk dkx dky dkz

Appendix D

Hermite polynomials

The Hermite polynomials Hn(î) are de®ned by means of an in®nite series expansion of the generating function g(î, s),

 

 

 

 

 

 

2

 

 

 

 

2

 

2

X

 

 

sn

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

g(î, s) e2îsÿs

 

eî

 

ÿ(sÿî)

n 0

Hn(î)

n!

 

(D:1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ÿ1 < î < 1 and where jsj , 1 in order for the Taylor series expansion to

converge. The coef®cients Hn(î) of the Taylor expansion are given by

 

 

 

 

 

n g(î, s)

 

 

 

2 @n

 

 

 

 

 

Hn(î)

@

 

 

 

 

 

s 0

 

eî

 

 

(eÿ(sÿî)

) s 0

(D:2)

 

 

@sn

 

 

 

 

@sn

For a function f (x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y) of the sum of two

variables x and y, we note that

 

 

 

 

 

@x

y @ y x

 

 

 

 

 

 

 

 

 

 

 

@ f

 

 

 

@ f

 

 

 

 

 

 

Applying this property with x s and y ÿî to the nth-order partial derivative in

equation (D.2), we obtain

 

 

 

 

 

 

 

 

 

 

@n

 

 

 

 

 

 

 

 

 

 

2

) s 0

 

n

2

) s 0

 

dn

2

@sn

(eÿ(sÿî)

(ÿ1)n @@în

(eÿ(sÿî)

(ÿ1)n n eÿî

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and equation (D.2) becomes

 

 

 

 

 

 

 

 

 

H

 

(î)

( 1)neî2

dn

eÿî2

(D:3)

 

 

n

 

 

 

n

 

 

ÿ

 

 

 

 

Another expression for the Hermite polynomials may be obtained by expanding

g(î, s) using equation (A.1)

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

g(î, s)

 

es(2îÿs)

1 sk

(2î ÿ s)k

 

 

 

 

 

 

 

 

 

 

 

k!

 

 

 

 

 

 

 

 

 

k 0

 

 

Applying the binomial expansion (A.2) to the factor (2î ÿ s)k, we obtain

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

k

(ÿ1)á k!

(2î)kÿásá

 

(2î

ÿ

s)k

á 0 á!(k ÿ á)!

 

 

 

 

 

 

 

 

 

 

 

 

 

and g(î, s) takes the form

296

 

Hermite polynomials

297

 

1 k

( 1)á2kÿáîkÿás k á

 

g(î, s)

k

 

 

 

ÿ

 

 

0 á 0

á!(k ÿ á)!

 

 

 

 

 

 

 

 

 

 

XXn

 

 

We next collect all the coef®cients of s

for an arbitrary n, so that k á n, and

 

replace the summation over k by a summation over n. When k n, the index á equals zero; when k n ÿ 1, the index á equals one; when k n ÿ 2, the index á equals two; and so on until we have k n ÿ M and á M. Since the index á runs from 0 to k so that á < k, this ®nal term gives M < n ÿ M or M < n=2. Thus, for k á n, the summation over á terminates at á M with M n=2 for n even and M

(n ÿ 1)=2 for n odd. The result of this resummation is

 

 

 

 

 

1 M

 

 

(

ÿ

1)á2nÿ2áînÿ2á

 

 

g(î, s)

n 0 á

 

0

 

 

á!(n ÿ

2á)!

sn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XX

 

 

 

 

 

 

n

in the

Since the Hermite polynomial Hn(î) divided by n! is the coef®cient of s

 

expansion (D.1) of g(î, s), we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

(ÿ1)á

 

înÿ2á

 

 

H

n

(î)

 

2n n!

 

 

 

 

2

 

 

(D:4)

 

 

 

 

á!(n ÿ

2á)!

 

 

 

á

 

0

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

We note that Hn(î) is an odd or even polynomial in î according to whether n is odd or even and that the coef®cient of the highest power of î in Hn(î) is 2n.

Expression (D.4) is useful for obtaining the series of Hermite polynomials, the ®rst

few of which are

 

H0(î) 1

H3(î) 8î3 ÿ 12î

H1(î) 2î

H4(î) 16î4 ÿ 48î2 12

H2(î) 4î2 ÿ 2 H5(î) 32î5 ÿ 160î3 120î

Recurrence relations

We next derive some recurrence relations for the Hermite polynomials. If we differentiate equation (D.1) with respect to s, we obtain

2(î ÿ s)e2îsÿs

2

1

Hn(î)

s nÿ1

 

 

 

 

 

 

 

1

(n

ÿ

1)!

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

The ®rst term (n 0) in the summation on the right-hand side vanishes because it is the derivative of a constant. The exponential on the left-hand side is the generating function g(î, s), for which equation (D.1) may be used to give

1

 

 

sn

 

1

 

s nÿ1

 

2(î ÿ s) n

 

0 Hn(î)

 

n 1 Hn(î)

 

 

 

 

 

n!

(n ÿ 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

X

 

 

 

 

 

Since this equation is valid for all values of s with jsjn, 1, we may collect terms

 

corresponding to the same power of s, for example s , and obtain

 

 

2îHn(î)

2 H nÿ1(î)

 

H n 1(î)

 

 

n!

 

ÿ

(n

ÿ

1)!

 

n!

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hn 1(î) ÿ 2îHn(î) 2nH nÿ1(î) 0

(D:5)

This recurrence relation may be used to obtain a Hermite polynomial when the two preceding polynomials are known.

298 Appendix D

Another recurrence relation may be obtained by differentiating equation (D.1) with

respect to î to obtain

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2se2îsÿs

2

 

1

 

d Hn sn

 

 

 

 

 

 

 

 

 

 

 

 

 

n 0

 

dî n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Replacing the exponential on the left-hand side using equation (D.1) gives

 

X n

 

 

 

 

X

 

 

 

 

 

 

1

 

 

 

 

sn

 

 

1

dHn sn

 

2s n 0 Hn(î)

n!

n 0

n!

 

If we then equate the coef®cients of s

, we obtain the desired result

 

 

dHn

2nH nÿ1(î)

(D:6)

 

The relations (D.5) and (D.6) may be combined to give a third recurrence relation.

Addition of the two equations gives

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hn 1(î) 2î ÿ

 

d

Hn(î)

(D:7)

 

 

With this recurrence relation, a Hermite polynomial may be obtained from the

 

preceding polynomial. By applying the relation (D.7) to Hn(î) k times, we have

 

 

 

 

 

 

 

 

 

d

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H n k (î) 2î ÿ

 

Hn(î)

(D:8)

Differential equation

To ®nd the differential equation that is satis®ed by the Hermite polynomials, we ®rst differentiate the second recurrence relation (D.6) and then substitute (D.6) with n replaced by n ÿ 1 to eliminate the ®rst derivative of H nÿ1(î)

 

d2 Hn

2n

d H nÿ1

 

4n(n ÿ 1)H nÿ2(î)

(D:9)

 

2

Replacing n by n ÿ 1 in the ®rst recurrence relation (D.5), we have

 

Hn(î) ÿ 2îHnÿ1(î) 2(n ÿ 1)H nÿ2(î) 0

 

which may be used to eliminate Hnÿ2(î) in equation (D.9), giving

 

 

 

d2 Hn

2nHn(î)

ÿ 4nîH nÿ1(î) 0

 

 

 

2

 

Application of equation (D.6) again to eliminate H nÿ1(î) yields

 

 

 

 

d2 Hn

 

dHn

 

 

 

 

 

 

ÿ 2î

 

 

2nHn(î) 0

(D:10)

 

 

 

2

 

which is the Hermite differential equation.

Integral relations

To obtain the orthogonality and normalization relations for the Hermite polynomials, we multiply together the generating functions g(î, s) and g(î, t), both obtained from equation (D.1), and the factor eÿî2 and then integrate over î

1

2

1 1 sntm

1

2

Hn(î)Hm(î) dî (D:11)

I ÿ1eÿî

 

g(î, s) g(î, t) dî n 0 m 0 n!m!

ÿ1eÿî

 

 

 

X X

 

 

 

Hermite polynomials

299

For convenience, we have abbreviated the integral with the symbol I. To evaluate the left integral, we substitute the analytical forms for the generating functions from equation (D.1) to give

1

2

2

 

2

1

2

I ÿ1eÿî

e2îsÿs

e2îtÿt

 

dî e2stÿ1eÿ(îÿsÿt) d(î ÿ s ÿ t) ð1=2e2st

where equation (A.5) has been used. We next expand e2st in the power series (A.1) to obtain

 

 

 

 

 

1 2n sntn

 

 

 

 

 

 

 

 

 

I ð1=2

 

 

 

 

 

 

 

 

 

 

 

 

 

n!

 

 

 

 

 

 

 

 

 

 

n 0

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

Substitution of this expression for I into equation (D.11) gives

 

 

 

 

ð1=2

1 2n(st)n

1 1 sntm

1

 

2

 

 

(D:12)

n 0

n!

 

n 0 m 0 n!m!

ÿ1eÿî

Hn(î) Hm(î) dî

 

 

 

X

 

 

X X

 

 

 

 

 

 

 

On the left-hand side, we see that there are no terms for which the power of s is not

 

equal to the power of t. Therefore, terms on the right-hand side with n 6m must

 

vanish, giving

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

ÿ1eÿî

 

Hn(î) Hm(î) dî 0,

n 6m

 

î

(D:13)

The Hermite polynomials H

 

 

 

 

 

 

 

<

<

1

with a weighting factor eÿ

î2 n(î) form an orthogonal set overnthe range ÿ1

 

 

. If we equate coef®cients of (st) on each side of equation

(D.12), we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

ÿ1eÿî

[Hn(î)]2 dî 2n n!ð1=2

 

 

 

 

which may be combined with equation (D.13) to give

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

ÿ1eÿî

Hn(î) Hm(î) dî 2n n!ð1=2änm

 

 

(D:14)

Completeness

If we de®ne the set of functions ön(î) as

ön(î) (2n n!)ÿ1=2ðÿ1=4eÿî2=2 Hn(î)

(D:15)

then equation (D.14) shows that the members of this set are orthonormal with weighting factor unity. We can also demonstrate1 that this set is complete.

We begin with the integral formula (A.8) which, with suitable de®nitions for the parameters, may be written as

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

2

 

 

 

If we replace eÿî

2

 

 

 

 

ÿ1eÿ(s

=4) iîs ds 2ð1=2eÿî

 

 

 

(D:16)

 

in equation (D.3) by the integral in (D.16), we obtain for Hn(î)

H

(î)

 

(ÿ1)n

eî2

@n

1 eÿ(s2=4) iîs ds

(ÿ1)n

eî2

1 eÿs2=4

@ n

eiîs ds

 

 

 

 

1=2

 

n

 

1=2

 

n

ÿ1

 

 

 

 

ÿ1

n

 

 

 

 

(ÿi)n eî2

 

1 eÿ(s2=4) iîs sn ds

 

 

 

 

 

 

 

 

 

 

 

 

ÿ1

 

 

 

 

 

 

 

 

 

 

 

1=2

 

 

 

 

 

 

 

 

 

 

 

1 See D. Park (1992) Introduction to the Quantum Theory, 3rd edition (McGraw-Hill, New York), p. 565.

300

 

 

 

Appendix D

 

 

The function ön(î) as de®ned by equation (D.15) then becomes

 

ö

 

(î)

 

(ÿi)n

eî2=2 1

eÿ(s2=4) iîs sn ds

(D:17)

 

n

 

2(2nðn!)1=2ð1=4

ÿ1

 

 

We now evaluate the summation

X1

ön(î)ön(î9)

n 0

by substituting equation (D.17) twice, once with the dummy variable of integration s and once with s replaced by t. Since the functions ön(î) are real, they equal their complex conjugates. These substitutions give

1 ö

 

(î)ö

 

(î9)

 

 

 

1

 

e2 î92)=2

1 1 eÿ[(s2 t2)=4] i(îs î9t)

1

(ÿ1)n

(st)n ds dt

 

 

3=2

 

n 0

 

n

 

 

 

 

n

 

 

 

 

 

 

 

ÿ1ÿ1

 

 

 

 

 

 

 

 

 

n 0

2n n!

 

X

 

 

 

 

2n

(ÿ1)

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

since (ÿi)

 

 

 

. The summation on the right-hand side is easily evaluated using

equation (A.1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1)n

 

 

st

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ÿ

 

 

 

 

 

 

 

eÿst=2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

0

n!

 

 

2

 

 

 

 

 

 

Noting that

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2 t2

 

st

 

 

(s t)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

2

 

 

4

 

 

 

 

 

 

 

 

 

we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

 

2

 

 

1

 

1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

ön(î)ön(î9)

 

 

e

î9

 

)=2

ÿ1ÿ1eÿ[(s t)

=4] i(îs î9t) ds dt

(D:18)

 

n

 

0

3=2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The double integral may be evaluated by introducing the new variables u and v

 

 

 

 

 

 

 

 

u

 

s t

, v

 

s ÿ t

 

or

 

s

 

u

 

v,

t

 

u

 

v

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ÿ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ds dt 2 du dv

 

 

 

 

 

 

 

 

 

 

The double integral is thereby factored into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2eÿu2 i(î î9)u du ei(îÿî9)v dv 2 3 ð1=2eÿ(î î9)2=4 3 2ðä(î ÿ î9)

ÿ1 ÿ1

where the ®rst integral is evaluated by equation (A.8) and the second by (C.6). Equation (D.18) now becomes

X1

ön(î)ön(î9) e[(î2 î92)=2]ÿ[(î î9)2=4]ä(î ÿ î9) e(îÿî9)2=4ä(î ÿ î9)

n 0

Applying equation (C.5e), we obtain the completeness relation for the functions ön(î)

X

ön(î)ön(î9) ä(î ÿ î9)

(D:19)

1

 

 

n 0

demonstrating, according to equation (3.31), that the set ön(î) is a complete set.

Appendix E

Legendre and associated Legendre polynomials

Legendre polynomials

The Legendre polynomials Pl(ì) may be de®ned as the coef®cients of sl in an in®nite series expansion of a generating function g(ì, s)

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

g(ì, s) (1 ÿ 2ìs s2)ÿ1=2 Pl(ì)sl

 

 

 

(E:1)

 

 

 

 

 

 

 

 

 

 

 

 

l 0

 

 

 

 

where ÿ1 < ì < 1 and jsj , 1 in order for the in®nite series to converge.

 

 

 

We may also expand g(ì, s) by applying the standard formula

 

 

 

 

 

 

X

 

 

dn f

z 0

 

X

: (2n

 

1)

 

 

 

 

1 zn

 

1 zn 1 : 3 : 5 :

 

 

f (z) (1 ÿ z)ÿ1=2 n 0

 

 

 

n 0

 

 

 

 

ÿ

 

 

n!

dzn

n!

 

2n

 

 

 

X

(2n)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

zn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22n(n!)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we set z s(2ì ÿ s), then g(ì, s) becomes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

g(ì, s)

1

(2n)!

 

sn(2ì ÿ s)n

 

 

 

 

 

n 0

22n(n!)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the use of the binomial expansion (A.2), the factor (2ì ÿ s)n can be further

expanded as

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

(ÿ1)á n!

(2ì)nÿásá

 

 

 

 

 

(2ì

ÿ

s)n

 

 

 

 

 

 

 

 

 

 

 

á 0 á!(n ÿ á)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

so that

g(ì, s) X1 Xn (ÿ1)á(2n)!ìnÿá s n á

n 0 á 0 2n á n!á!(n ÿ á)!

We next collect all the coef®cients of sl for some arbitrary l and replace the summation over n with a summation over l. Since n á l, when n l, we have á 0; when n l ÿ 1, we have á 1; and so on until n l ÿ M, á M, where M < l ÿ M or

M< l=2. The summation over á terminates at á M, with M l=2 for l even and

M(l ÿ 1)=2 for l odd, because á cannot be greater than n. The result is

301