
- •Введение
- •Часть 1
- •Глава 1 модели данных
- •Уровни моделей данных
- •1 Инфологические модели данных
- •1.1 Диаграмма Бахмана
- •1.2 Модель «сущность-связь»(er)
- •Нотация Мартина
- •Нотация idef1x
- •Нотация Баркера
- •2. Даталогические модели
- •2.1. Документальные модели
- •2.1.1. Ориентированные на формат документа
- •2.1.2. Дескрипторные модели
- •2.1.3. Тезаурусные модели
- •2.2. Фактографические модели
- •2.2.1. Теоретико-графовая модель
- •2.2.1.1. Иерархическая модель
- •2.2.1.2. Сетевая модель
- •2.2.2. Теоретико-множественные модели
- •2.2.2.1. Реляционная модель
- •Правила Теда Кодда
- •2.2.2.2. Бинарных ассоциаций
- •2.2.3. Объектно-ориентированные модели
- •3. Физические модели
- •3.1. Модели, основанные на файловых структурах
- •3.2. Модели, основанные на странично-сегментной организации
- •Известные сетевые субд:
- •Глава 2. Проектирование баз данных
- •1.1. Избыточность данных и аномалии обновления
- •1.2. Функциональные зависимости
- •1.3. Нормальные формы и схемы выполнения нормализации
- •1) 1Нф.
- •2) 2Нф.
- •3) 3Нф.
- •4) Нфбк (нормальная форма Бойса-Кодда).
- •5) 4Нф.
- •6) 5Нф.
- •1.4 Синтез реляционных баз данных
- •1.5 Пример синтеза
- •1.6 Пример декомпозиции
- •Часть 2
- •Реляционная алгебра
- •Введение
- •Стандартные реляционные операции
- •Свойства стандартных операций
- •Специальные операции
- •Язык sql как стандартный язык баз данных
- •Введение в sql
- •2.1.1 Функциональные возможности sql
- •2.2 Создание баз данных
- •2.2.1 Оператор create database
- •2.3 Удаление баз данных
- •2.4.3 Размер поля
- •2.4.4 Тип поля
- •2.5 Удаление таблиц
- •2.5.1 Оператор drop table
- •2.6. Данные и записи данных
- •2.6.1 Оператор select
- •2.6.2 Оператор distinct
- •2.6.3 Оператор from { таблица [ псевдоним ] } [,...]
- •2.6.4 Оператор where (условие)
- •2.6.5 Оператор group by { поле | Integer } [,...]
- •2.6.6 Оператор having( условие)
- •2.6.7 Оператор order by { поле | Integer [ asc|desc ] } [,...]
- •2.6.8 Оператор union [all] select-команда
- •2.6.9 Оператор intersect [all] select-команда
- •2.6.10 Оператор except [all] select-команда
- •2.6.11 Into { temp | scratch } таблица
- •2.6.12 Insert - добавлять данные
- •2.6.13 Values ( константа [,...] )
- •2.6.18 Unload - выгрузить данные в текстовый файл
- •2.7 Операторы
- •2.7.3 Арифметические операторы
- •2.7.4 Приоритеты операторов
- •2.8 Функции
- •2.8.3 Текстовые функции
- •2.8.4 Функции работы с временем и датами
- •2.8.5 Вспомогательные функции
- •2.9 Виды на таблицы данных (Просмотры)
- •2.9.1Create view - создать новый вид на таблицу данных
- •2.9.2 Drop view - удалить вид на таблицу данных
- •2.10 Пользовательские процедуры
- •2.10.1 Create procedure - создать пользовательскую процедуру
- •2.10.2 Dba
- •2.10.3 References { byte | text }
- •2.10.4 Default { Wert | null }
- •2.10.5 Returning { Feldtyp | references { byte | text } }
- •2.10.6 Drop procedure - удалить процедуру
- •2.12.2 Нормальный текст
- •1999 - Sql-99, sql-3 (iso/iec 9075:1999(e) Information technology - Database languages - sql)
- •2003 - Sql-2003
- •4. Виды систем баз данных
- •4.1.Oracle
- •4.1.1 Типы данных
- •4.1.1.1.Символьные типы
- •4.1.1.2.Числовые типы
- •Даты, временные метки и интервалы
- •4.1.1.3.Логические типы
- •Двоичные данные
- •4.1.1.4.Типы данных для сети Интернет
- •4.1.1.5.Типы данных «Any»
- •4.2. Mysql
- •4.2.1 Типы данных.
- •4.2.1.1.Character String (строковый)
- •4.2.1.2.National Character String (национальный строковый)
- •4.2.1.3.Binary Large Object String (двоичный)
- •4.2.1.4.Numeric (числовой)
- •4.2.1.5.Datetime (дата/время)
- •4.2.1.6.Interval (интервальный)
- •4.2.1.7.Типы enum и set
- •4.2.2Использование типов столбцов их других систем управления базами данных
- •4.3. Postgresql
- •4.3.1 Типы данных
- •4.3.1.1Числовые типы
- •4.3.1.1.Целочисленные типы
- •4.3.1.2.Числа с заданной точностью
- •4.3.1.3.Типы с плавающей точкой
- •4.3.1.4.Серийные типы
- •4.3.1.5.Денежные типы
- •4.3.1.6.Символьные типы
- •4.3.1.7.Двоичные типы данных
- •4.3.1.8.Типы дата/времени
- •4.3.1.9.Логический тип
- •4.3.1.10.Перечисления
- •5. Использованные в пример таблицы данных
- •Символьные
- •Числовые типы данных
- •Двоичные типы данных
- •Типы данных времени, даты, интервалы
- •Логические типы данных
- •Список литературы
- •Оглавление
- •Часть 1………………………………………………………….…………………………….………… 4
- •Глава 1 модели данных………………………….………………….……………….…........…. 4
- •Глава 2 проектирование баз данных…………..……………………………………...… 40
- •1.4 Синтез реляционных баз …...………………………………………………………… 44
- •Часть 2……...…...………………………………………………………………………………….… 52
3.1. Модели, основанные на файловых структурах
В каждой СУБД по-разному организованы хранение и доступ к данным, однако существуют некоторые файловые структуры, которые имеют общепринятые способы организации и широко применяются практически во всех СУБД.
В системах баз данных файлы и файловые структуры, которые используются для хранения информации во внешней памяти, можно классифицировать следующим образом :
С точки зрения пользователя, файлом называется поименованная линейная последовательность записей, расположенных на внешних носителях.
Условная последовательность записей:
-
1-я запись
2
Предшествующая запись
-я записьТ
Следующая запись
екущая записьN-я запись
Основная область
-
Содержание записей
Ссылки на синонимы
Петров
1
Степанов
2
Область переполнения
-
Содержание записей
Ссылки на синонимы
Петров
Степанов
3
Степанчиков
Так как файл— это линейная последовательность записей, то всегда в файле можно определить текущую запись, предшествующую ей и следующую за ней.
Всегда существует понятие первой и последней записи файла.
В соответствии с методами управления доступом различают устройства внешней памяти с произвольной адресацией(магнитные и оптические диски) и устройства споследовательной адресацией(магнитофоны, стримеры).
На устройствах с произвольной адресацией теоретически возможна установка головок чтения-записи в произвольное место мгновенно. Практически существует время позиционирования головки, которое весьма мало по сравнению со временем считывания-записи.
В устройствах с последовательным доступом для получения доступа к некоторому элементу требуется «перемотать (пройти)» все предшествующие ему элементы информации. На устройствах с последовательным доступом вся память рассматривается как линейная последовательность информационных элементов .
Файлы с постоянной длиной записи, расположенные на устройствах прямого доступа (УПД), являются файлами прямого доступа.
В этих файлах физический адрес расположения нужной записи может быть вычислен по номеру записи (NZ).
Каждая файловая система СУФ — система управления файлами поддерживает некоторую иерархическую файловую структуру, включающую чаще всего неограниченное количество уровней иерархии в представлении внешней памяти.
Иерархическая организация файловой структуры хранения:
Для каждого файла в системе хранится следующая информация:
- имя файла;
- тип файла (например, расширение или другие характеристики);
- размер записи;
- количество занятых физических блоков;
- базовый начальный адрес;
- ссылка на сегмент расширения;
- способ доступа (код защиты).
Для файлов с постоянной длиной записи адрес размещения записи с номером К может быть вычислен по формуле:
ВА + (К - 1) * LZ + 1,
где ВА — базовый адрес, LZ — длина записи.
И как было сказано ранее, если можно всегда определить адрес, на который необходимо позиционировать механизм считывания-записи, то устройства прямого доступа делают это практически мгновенно, поэтому для таких файлов чтение произвольной записи практически не зависит от ее номера. Файлы прямого доступа обеспечивают наиболее быстрый доступ к произвольным записям, и их использование считается наиболее перспективным в системах баз данных.
На устройствах последовательного доступа могут быть организованы файлы только последовательного доступа.
Файлы с переменной длиной записи всегда являются файлами последовательного доступа. Они могут быть организованы двумя способами:
Конец записи отличается специальным маркером.
-
Запись 1
Х
Запись 2
Х
Запись 3
Х
В начале каждой записи записывается ее длина.
-
LZ1
Запись 1
LZ2
Запись 2
LZ3
Запись 3
Здесь LZN — длина N-й записи.
Файлы с прямым доступом обеспечивают наиболее быстрый способ доступа.
Мы не всегда можем хранить информацию в виде файлов прямого доступа, но главное — это то, что доступ по номеру записи в базах данных весьма неэффективен. Чаще всего в базах данных необходим поиск по первичному или возможному ключам, иногда необходима выборка по внешним ключам, но во всех этих случаях мы знаем значение ключа, но не знаем номера записи, который соответствует этому ключу.
При организации файлов прямого доступа в некоторых очень редких случаях возможно построение функции, которая по значению ключа однозначно вычисляет адрес (номер записи файла).
NZ = F(K),
где NZ — номер записи, К — значение ключа, F( ) — функция.
Функция F() при этом должна быть линейной, чтобы обеспечивать однозначное соответствие.
Пример линейной функции пересчета значения ключа в номер записи:
.
Однако далеко не всегда удастся построить взаимно-однозначное соответствие между значениями ключа и номерами записей.
Часто бывает, что значения ключей разбросаны по нескольким диапазонам.
В этом случае не удается построить взаимнооднозначную функцию, либо эта функция будет иметь множество незадействованных значений, которые соответствуют недопустимым значениям ключа. В подобных случаях применяют различные методы хэширования (рандомизации) и создают специальные хэш- функции.
Суть методов хэшированиясостоит в том, что мы берем значения ключа ( или некоторые его характеристики) и используем его для начала поиска, то есть мы вычисляем некоторую хэш-функцию h(k) и полученное значение берем в качестве адреса начала поиска. То есть мы не требуем полного взаимно-однозначного соответствия, но, с другой стороны, для повышения скорости мы ограничиваем время этого поиска (количество дополнительных шагов) для окончательного получения адреса. Таким образом, мы допускаем, что нескольким разным ключам может соответствовать одно значение хэш-функции (то есть один адрес). Подобные ситуации называются коллизиями. Значения ключей, которые имеют одно и то же значение хэш-функции, называются синонимами.
Поэтому при использовании хэширования как метода доступа необходимо принять два независимых решения:
выбрать хэш-функцию;
выбрать метод разрешения коллизий.
Существует множество различных стратегий разрешения коллизий, но мы для примера рассмотрим две достаточно распространенные.
Стратегия разрешения коллизий с областью переполнения.
Первая стратегия условно может быть названа стратегией с областью переполнения. При выборе этой стратегии область хранения разбивается на 2 части:
основную область;
область переполнения.
Для каждой новой записи вычисляется значение хэш-функции, которое определяет адрес ее расположения, и запись заносится в основную область в соответствии с полученным значением хэш-функции.
Основная область:
Если вновь заносимая запись имеет значение функции хэширования такое же, которое использовала другая запись, уже имеющаяся в БД, то новая запись заносится в область переполнения на первое свободное место, а в записи-синониме, которая находится в основной области, делается ссылка на адрес вновь размещенной записи в области переполнения. Если же уже существует ссылка в записи-синониме, которая расположена в основной области, то тогда новая запись получает дополнительную информацию в виде ссылки и уже в таком виде заносится в область переполнения.
При этом цепочка синонимов не разрывается, но мы не просматриваем ее до конца, чтобы расположить новую запись в конце цепочки синонимов, а располагаем всегда новую запись на второе место в цепочке синонимов, что существенно сокращает время размещения новой записи. При таком алгоритме время размещения любой новой записи составляет не более двух обращений к диску, с учетом того, что номер первой свободной записи в области переполнения хранится в виде системной переменной.
Рассмотрим теперь механизмы поиска произвольной записи и удаления записи для этой стратегии хэширования.
При поиске записи также сначала вычисляется значение ее хэш-функции и считывается первая запись в цепочке синонимов, которая расположена в основной области. Если искомая запись не соответствует первой в цепочке синонимов, то далее поиск происходит перемещением по цепочке синонимов, пока не будет обнаружена требуемая запись. Скорость поиска зависит от длины цепочки синонимов, поэтому качество хэш-функции определяется максимальной длиной цепочки синонимов. Хорошим результатом может считаться наличие не более 10 синонимов в цепочке.
При удалении произвольной записи сначала определяется ее место расположения. Если удаляемой является первая запись в цепочке синонимов, то после удаления на ее место в основной области заносится вторая (следующая) запись в цепочке синонимов, при этом все указатели (ссылки на синонимы) сохраняются.
Если же удаляемая запись находится в середине цепочки синонимов, то необходимо провести корректировку указателей: в записи, предшествующей удаляемой, в цепочке ставится указатель из удаляемой записи. Если это последняя запись в цепочке, то все равно механизм изменения указателей такой же, то есть в предшествующую запись заносится признак отсутствия следующей записи в цепочке, который ранее хранился в последней записи.