Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы опт решений / Курсовая работа / Учебники / Metodyi_optimizatsii_upravleniya_i_prinyatiya_resheniy_primeryi_zadachi_keysyi..pdf
Скачиваний:
357
Добавлен:
22.05.2015
Размер:
6.63 Mб
Скачать

 

Ореховый

Райский вкус

Батончик

Белка

Ромашка

 

звон

 

 

 

 

Переменные

450,00

60,00

10,00

500,00

10,00

 

 

 

Цель

 

 

Расход

 

P=

1509,00

 

 

Рис. 21

При этом итоговая прибыль целочисленного решения чуть выше того, что получается при простом округлении решения, приведенного на Рис. 18.

 

Ореховый

Райский вкус

Батончик

Белка

Ромашка

 

звон

 

 

 

 

Переменные

450,00

60,00

10,00

500,00

10,00

 

 

 

Цель

 

 

Расход

 

P=

1509,00

 

 

Рис. 22

Тем не менее, в данной задаче отличие целочисленного решения от обычного по величине целевой функции весьма мало. При этом следует иметь в виду, что добавление этого ограничения исключает использование эффективных методов решения задач линейного программирования. В частности, при целочисленных ограничениях невозможно получить отчет об устойчивости, который, как мы уже видели и неоднократно убедимся далее, дает чрезвычайно важную информацию для анализа вопросов «что если», обеспечивает общий взгляд на исследуемую проблему и более глубокое ее понимание. Задача с целочисленными переменными гораздо более сложна для исследования, а алгоритмы ее решения гораздо менее универсальны и эффективны. Поэтому не задавайте без нужды условие целочисленности. Это особенно важно, когда вы исследуете большую модель (несколько десятков и сотен переменных и ограничений). Задавая целочисленное ограничение в подобной задаче, вы обязательно обнаружите, что время поиска решения драматически увеличилось.

Разумеется, в некоторых случаях без условия целочисленности не обойтись (см. предыдущий пример, а также ниже примеры задач с двоичными, логическими переменными).

Действие 2-е. Жаль…, ведь мы все так любим «Батончик»!

После решения задачи об оптимальном плане производства для родной кондитерской фабрики, юноша (сын владельца фабрики) испытал двойственное чувство. С одной стороны, прибыль, соответствующая найденному им производственному плану, почти на 430 у.е. больше, чем по плану мастера, т.е. он заработал более 400 баксов. Это здорово! С другой стороны, почему компьютер отказался от выпуска Батончика (его с раннего детства любимого лакомства)? Юноша был уверен, что «Батончик» – один из лучших продуктов, который выпускает фабрика его отца. Если его не окажется на прилавках, может пострадать имидж фабрики. Ведь не только он сам, но и все соседи в округе обожают эту конфету!

Кроме того, он вспомнил, что на занятиях по количественным методам в менеджменте, преподаватель все время твердил об анализе полученного оптимального решения на устойчивость: малые изменения величины запасов могут привести к радикальному изменению решения! А вдруг этот вредный

Зайцев М.Г., Варюхин С.Е.

47

старый мастер не только план производства определяет на глазок, но и запасы сырья взвешивает кое-как? А что, если каких-то запасов не хватит для его оптимального плана? Он не доберет прибыли! Может быть тогда более прибыльным станет иной план? Какой?

И еще одна мысль. У него есть в кармане, что-то около 50 баксов. Может пустить их в дело? Докупить у знакомого оптовика какого-нибудь сырья, потихоньку подложить на склад (чтоб мастер не заметил), как будто, так и было. Тогда можно получить дополнительную прибыль (и премию от отца). Только вот какого сырья докупать? И сколько? И на сколько от этого возрастет прибыль?

Итак, ответьте на следующие вопросы.

a.Как надо изменить норму прибыли для любимого продукта сына хозяина фабрики (Батончика), чтобы он вошел в оптимальный план (ответьте, не решая задачу, анализируя лишь отчет об устойчивости)?

b.Введите это изменение в данные и решите задачу заново. Как изменился оптимальный план?

c.Какой ресурс является наиболее дефицитным (т.е. максимально влияет на прибыль)?

d.Можете ли Вы сказать (не решая задачу снова) как изменится прибыль от производства, если количество этого ресурса оценено а) с избытком в 10 весовых единиц; б) с недостатком в 5 единиц?

e.Есть ли другой способ добиться производства «Батончика» (кроме изменения нормы прибыли)?

Анализ Действия 2-го.

Для того, чтобы разобраться в ситуации, требуется провести анализ решения. В этом нам поможет отчет об устойчивости решения, поэтому вернемся еще раз в установки Поиска решения, удалим условие целочисленности, которое мы добавляли с целью эксперимента и найдем прежнее решение. Когда Поиск решения сообщит, что решение найдено, отметим в правом окне пункт «Устойчивость». На новом листе будет получен отчет следующего вида (Рис. 23).

Изменяемые ячейки

 

 

 

 

Результ.

Нормир.

Целевой

Допустимое

Допустимое

 

 

Ячейка

Имя

значение

стоимость

Коэффициент

Увеличение

Уменьшение

 

 

$C$13

Переменные Ореховый звон

454,48

0,0000

1

0,052299

0,019488

 

 

$D$13

Переменные Райский вкус

58,78

0,0000

0,7

0,043961

0,345734

 

 

$E$13

Переменные Батончик

0,00

-0,0087

1,1

0,008737

1,00E+30

 

 

$F$13

Переменные Белка

503,99

0,0000

2

0,956405

0,021902

 

 

$G$13

Переменные Ромашка

9,13

0,0000

0,6

0,100575

0,039565

Ограничения

 

 

 

 

 

 

 

 

 

Результ.

Теневая

Ограничение

Допустимое

Допустимое

 

 

Ячейка

Имя

значение

Цена

Правая часть

Увеличение

Уменьшение

 

 

$B$16

Темный шок. Расход

1411,00

0,0454

1411

0,262411

7,952174

 

 

$B$17

Светлый шок. Расход

149,00

2,4973

149

1,042254

11,868952

 

 

$B$18

Сахар Расход

815,50

1,0115

815,5

0,392226

20,092150

 

 

$B$19

Карамель Расход

465,89

0,0000

466

1,00E+30

0,110834

 

 

$B$20

Орехи Расход

1080,00

0,2297

1080

16,043860

0,318052

Рис. 23

Согласно отчету об устойчивости, нормированная стоимость конфеты «Батончик», не вошедшей в оптимальный план составляет 0,00874 у.е. Абсолютная величина этого числа показывает, на сколько нужно увеличить

прибыль от производства одного пакетика этих конфет, чтобы «Батончик» вошел в оптимальный план. С точки зрения анализа ситуации, малость этого числа (менее 0,8% от нормы прибыли) свидетельствует о том, что если мы «насильно» заставим Поиск решения запланировать выпуск «Батончика» (введя условие E13>= 100, например), большого уменьшения прибыли не произойдет.

Давайте проверим это умозаключение и потребуем, чтобы количество произведенных пакетиков «Батончика» было бы не менее 100 (Рис. 24).

 

Ореховый

Райский вкус

Батончик

Белка

Ромашка

 

звон

 

 

 

 

Переменные

411,70

73,40

100,00

462,98

15,11

 

 

 

Цель

 

 

Расход

 

P=

1508,11

 

 

Рис. 24

Прибыль уменьшилась менее, чем на 1 у.е. Потребуем, чтобы количество произведенных пакетиков «Батончика» было бы не менее 200, 300 …. Во всех этих случаях мы получим другие оптимальные решения, а прибыль будет отличаться от оптимальной (для исходного варианта постановки задачи) не более чем на 1%.

Интересно, а какое же количество Батончика запланирует выпустить Поиск решения, если мы изменим его норму прибыли, как подсказывает отчет об устойчивости?

Добавим к цене «Батончика» чуть большее число, чем нормированная стоимость Батончика - 0,01 у.е, чтобы заведомо изменить оптимальный план. При этом мы можем быть уверены, что Батончик войдет в оптимальный план, но не можем знать заранее, в каком количестве, и не можем определить, как изменяться количества других конфет.

В этом случае прибыль на единицу этого продукта станет равной 1,11 у.е. Еще раз запустим Поиск решения. Результат представлен на следующем рисунке

(Рис. 25).

 

Ореховый

Райский вкус

Батончик

Белка

Ромашка

 

звон

 

 

 

 

Переменные

0,00

217,50

1067,50

65,00

70,00

 

 

 

Цель

 

 

Расход

 

P=

1509,17

 

 

Рис. 25

Видно, сколь драматически отличается это решение от базового, хотя значения прибыли практически одинаковы! В таких случаях обычно говорят, что решение задачи неустойчиво.

Решение называется неустойчивым, если малые изменения параметров приводят к огромным изменениям решения.

Чаще всего о неустойчивости говорят в негативном смысле, подразумевая даже, что неустойчивость ограничивает возможности аналитика использовать количественные методы для принятия управленческих решений. Действительно, поскольку в реальной ситуации параметры модели всегда известны с определенной неточностью (ошибкой), а малые изменения параметров приводят к катастрофическим изменениям решения, то найденное оптимальное решение кажется бесполезным!

Действительно, если мы пытаемся выбрать между несколькими различными альтернативами, каждая из которых может стать оптимальной при

Зайцев М.Г., Варюхин С.Е.

49

незначительным изменении параметров, мы не сможем сделать правильный выбор. В этом случае уместно говорить о «деструктивной» роли неустойчивости и пытаться найти методы борьбы с ней.

Однако, в данном случае, неустойчивость решения не создает никаких проблем: ведь прибыль-то в обоих случаях почти одинакова! Попробуйте вернуть прежнее значение прибыли для Батончика (1.1 у.е.) – прибыль уменьшится до 1498,5 у.е. Это менее чем на 1% ниже оптимальной.

Таким образом, в нашем распоряжении оказывается множество альтернативных решений, сильно различающихся по значениям переменных, но очень близких по прибыли. Это - не плохо. Это – очень хорошо!

Наличие многих, пусть не вполне оптимальных, но «хороших» альтернативных решений позволяет менеджеру выбрать такое, которое в наилучшей степени отвечает тем или иным неформализуемым требованиям и условиям, которые всегда присутствуют при принятии решений. В данном случае, таким неформализуемым условием является аномальная любовь лица, принимающего решение, к «Батончику», который, к несчастью, не вошел в оптимальный план при исходной постановке задачи. За эту любовь приходится платить либо повышением цены на данный продукт, либо снижением валовой прибыли. Что предпочесть?

Смириться с отсутствием Батончика в оптимальном плане? Повысить цену?

Ввести ограничение на минимальное количество пакетиков Батончика? На этот вопрос модель ответа не даст. Модели не принимают решений! Эта

задача менеджера. Наличие множества альтернативных решений поможет ему выбрать решение, «приятное во всех отношениях». При этом, оно необязательно должно быть оптимальным в строго математическом смысле слова.

Необходимо, видимо, еще отметить, что в задаче про кондитерскую фабрику несмотря на обилие решений, близких к оптимальному, имеется еще больше «плохих» решений. Разумеется, решение, предложенное мастером, было неважным. Но там получилось не совсем честно – ведь ни один ресурс не израсходован полностью. Мастер мог бы уточнить свое предложение, несколько увеличив план производства. Если мы чуть изменим модель, потребовав, чтобы выпускались одинаковые количества конфет (для этого добавим одно ограничение – C13:F13=G13), то получим следующее решение (Рис. 26).

 

Ореховый

Райский вкус

Батончик

Белка

Ромашка

 

звон

 

 

 

 

Переменные

212,86

212,86

212,86

212,86

212,86

 

 

 

Цель

 

 

Расход

 

P=

1149,43

 

 

Рис. 26

Прибыль теперь побольше, чем в первоначальном предложении выпустить по 200 пакетов, но все равно гораздо хуже оптимального решения. Так что выпускать одинаковое количество конфет смысла нет.

Или, например, мы вводили требование выпустить не меньше чем 100, 200, 300 пакетов «Батончика» и результат почти не менялся. А если бы народу захотелось, чтобы было много «Ромашки»? В базовом плане ее всего 9 пакетов. Давайте добавим ограничение, что «Ромашки» должно быть не менее 300 пакетов

(Рис. 27)!

 

Ореховый

Райский вкус

Батончик

Белка

Ромашка

 

звон

 

 

 

 

Переменные

0,00

0,00

767,50

122,50

300,00

 

 

 

Цель

 

 

Расход

 

P=

1269,25

 

 

Рис. 27

Этот результат в комментариях не нуждается.

Таким образом, наличие большого числа решений, близких к оптимальному, не является гарантией того, что любой, произвольно выбранный план, окажется хорошим.

Вернемся к полученному нами ранее отчету об устойчивости (Рис. 23). Из нижней таблицы, «рассказывающей» о ресурсах, следует, что наибольшей теневой ценой обладает ресурс №2 - «Светлый шоколад». Это и есть наиболее дефицитный ресурс. Правда интервал устойчивости, соответствующий этой цене (2.4973 у.е.) очень узок. Если запас светлого шоколада оценен с избытком в 10 единиц (то есть, на самом деле, его запас не 149, а 139), то реальная прибыль будет ниже на

Pmax b2 Y2 10 2.5 25 у.е.

Формулу для оценки уменьшения прибыли можно использовать,

поскольку b2 = -10 попадает в интервал устойчивости (допустимое уменьшение 11,868952). Вместе с тем, если запас этого ресурса оценен с недостатком в 5 единиц (то есть, на самом деле, его запас не 149, а 154), предсказать увеличение

прибыли нельзя, т.к. b2 = +5 выходит за границы интервала устойчивости (допустимое увеличение 1,042254).

Ответить на последний вопрос (Есть ли другой способ добиться производства «Батончика», кроме изменения нормы прибыли или введения дополнительных ограничений на минимальное количество пакетов Батончика в плане?) не так просто.

Прежде всего обратим внимание на то, что любой производственный план есть результат конкуренции продуктов за ресурсы. Заметим, что у Батончика, не вошедшего в оптимальный план прибыль на единицу продукта отнюдь не самая низкая: «Ореховый звон», «Райский вкус» и «Ромашка» менее прибыльны. Тем не менее Батончик проиграл конкуренцию за ресурсы, и его нормированная цена показывает, как много он проиграл.

Эксперимент с увеличением нормы прибыли Батончика, показывает, что основным конкурентом Батончика является Белка. Разумно предположить, что конкурируют они за наиболее дефицитные ресурсы, т.е. те которые имеют более высокие теневые цены. Такими ресурсами являются светлый шоколад и сахар.

К сожалению, никакого алгоритма, который бы показал какой ресурс и насколько нужно увеличить, чтобы снять (или смягчить) конкуренцию Батончика

иБелки нет. Можно, однако, попробовать увеличить один из дефицитных ресурсов на величину, выходящую за пределы интервала устойчивости его запаса

изаново решить задачу на максимум. При этом можно добиться, чтобы в плане присутствовали значительные количества пакетиков и Батончика и Белки.

Вбольших задачах линейной оптимизации подобное исследование может быть весьма трудоемким. Прямого ответа на поставленный вопрос отчет об