Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив ZIP - WinRAR_3 / Метрология основы / Точность измерений / ДЕ 2 2.02.6 Достоверность контроля..doc
Скачиваний:
168
Добавлен:
22.05.2015
Размер:
190.98 Кб
Скачать

Статистические методы контроля качества

Смысл статистических методов контроля качества заключается в значительном снижении затрат на его проведение по сравнению c органолептическими (визуальными, слуховыми и т.п.) со сплошным контролем, с одной стороны, и в исключении случайных изменений качества продукции – с другой.

Различаются две области применения статистических методов в производстве (рис. 4.8):

при регулировании хода технологического процесса с целью удержания его в заданных рамках (левая часть схемы);

при приемке изготовленной продукции (правая часть схемы).

Рис. Области применения статистических методов управления качеством продукции

Для контроля технологических процессов решаются задачи статистического анализа точности и стабильности технологических процессов и их статистического регулирования. При этом за эталон принимаются допуски на контролируемые параметры, заданные в технологической документации, и задача заключается в жёстком удержании этих параметров в установленных пределах. Может быть поставлена также задача поиска новых режимов выполнения операций с целью повышения качества конечного производства.

Прежде чем браться за применение статистических методов в производственном процессе, необходимо четко представлять цель применения этих методов и выгоду производства от их применения. Очень редко данные используются для заключения о качестве в том виде, в каком они были получены. Обычно для анализа данных используются семь, так называемых, статистических методов или инструментов контроля качества: расслаивание (стратификация) данных; графики; диаграмма Парето; причинно-следственная диаграмма (диаграмма Исикавы или «рыбий скелет»); контрольный листок и гистограмма; диаграмма разброса; контрольные карты.

3. Общие принципы определения оценок качества контроля при выборке.

По способу отбора изделий, подвергаемых контролю качества, различают сплошной (стопроцентный) и выборочный контроль.

Для сокращения затрат на контроль в крупносерийном и массовом производстве больших партий изделий (генеральной совокупности) контролю подвергают только часть партии - выборку. Очевидно, что выборка должно производиться случайным образом.

Если уровень качества изделий в выборке соответствует установленным требованиям, то считают, что всю партию можно принять как годную. В противном случае партия бракуется.

В ряде случаев вся партия может быть ошибочно забракована, и это считается ошибкой первого рода, или риском поставщика. Ошибка противоположного свойства называется ошибкой второго рода или риском заказчика. Обе ошибки выражаются в процентах и оговариваются при совершении торговых сделок.

Если долю дефектных изделий в партии обозначить как q, то

где и- соответственно число дефектных деталей и их общее число.

где - доля дефектных деталей в выборке;

Z - число бракованных деталей;

n - объем выборки.

Если бы генеральная совокупность и выборка имели распределение деталей по закону равной вероятности, то выборочный контроль значительно упростился бы, но, к сожалению, закономерности не совпадают и в общем случае:

что и является причиной ошибок обоих родов при выборочном контроле.

Если , то возникает ошибка первого рода и, наоборот.

В разных случаях возникают разные законы распределения вероятностей попадания годных и дефектных изделий в выборку, поэтому следует правильно выбирать математический аппарат для оценки качества контроля.

При выборочном контроле применяют в основном биномиальный, гипергеометрический, Пуассона и нормальный законы распределения.

Первые три являются законами распределения случайных величин и используются при контроле по качественному признаку, когда каждое отдельное испытание в серии имеет только два исхода: изделие годное или дефектное. Нормальный закон используется при контроле по количественным признакам.